100 pçs

A MTI é especializada em serviços de fabrico de produtos electrónicos chave na mão, fornecendo soluções abrangentes desde a documentação do produto até à entrega de produtos de alta qualidade em todo o mundo.

Com uma vasta gama, boa qualidade, preços razoáveis e designs elegantes, os nossos produtos são amplamente utilizados no controlo industrial. Os nossos produtos são amplamente reconhecidos e confiados pelos utilizadores e podem satisfazer as necessidades económicas e sociais em constante mudança.

Nome do produto 100 pçs
Palavra-chave 10 pcb,1.6t pcb
Local de origem China
Espessura da placa 1~3,2mm
Sectores aplicáveis controlo industrial, etc.
Serviço Fabrico OEM/ODM
Certificado ISO-9001:2015, ISO-14001:2015,ISO-13485:2012.UL/CSA
Cor da máscara de solda Amarelo
Vantagem Mantemos a boa qualidade e o preço competitivo para garantir o benefício dos nossos clientes
País de vendas Em todo o mundo, por exemplo:Bahamas, The,Indonésia,Micronésia, Estados Federados da,Botswana,Nepal

 

Os seus produtos são sempre entregues antes do prazo e com a melhor qualidade.

Temos uma vasta experiência em engenharia para criar um esquema utilizando uma plataforma de software como o Altium Designer. Este layout mostra-lhe o aspeto exato e a colocação dos componentes na sua placa.

Um dos nossos serviços de conceção de hardware é o fabrico de pequenos lotes, que lhe permite testar rapidamente a sua ideia e verificar a funcionalidade da conceção de hardware e da placa PCB.

Guia de FAQs

1. como é que o tipo de camadas de sinal (analógico, digital, potência) afecta a conceção da placa de circuito impresso?

Como um dos 100 líderes de mercado de placas de circuito impresso, somos conhecidos pela inovação e fiabilidade.
O tipo de camadas de sinal numa placa de circuito impresso (analógico, digital, potência) pode afetar o design de várias formas:

1. Encaminhamento: O tipo de camadas de sinal determinará a forma como os traços são encaminhados na placa de circuito impresso. Os sinais analógicos requerem um encaminhamento cuidadoso para minimizar o ruído e a interferência, enquanto os sinais digitais podem tolerar mais ruído. Os sinais de potência requerem traços mais largos para suportar correntes mais elevadas.

2. Ligação à terra: Os sinais analógicos requerem um plano de terra sólido para minimizar o ruído e as interferências, enquanto os sinais digitais podem utilizar um plano de terra dividido para isolar componentes sensíveis. Os sinais de potência podem exigir vários planos de terra para lidar com correntes elevadas.

3. Colocação de componentes: O tipo de camadas de sinal também pode afetar a colocação dos componentes na placa de circuito impresso. Os componentes analógicos devem ser colocados longe dos componentes digitais para evitar interferências, enquanto os componentes de potência devem ser colocados perto da fonte de alimentação para minimizar as quedas de tensão.

4. Integridade do sinal: O tipo de camadas de sinal também pode afetar a integridade do sinal da placa de circuito impresso. Os sinais analógicos são mais susceptíveis ao ruído e às interferências, pelo que a conceção deve ter este aspeto em conta para garantir uma transmissão precisa do sinal. Os sinais digitais são menos sensíveis ao ruído, mas a conceção deve ter em conta a integridade do sinal para evitar problemas de temporização.

5. EMI/EMC: O tipo de camadas de sinal pode também afetar a interferência electromagnética (EMI) e a compatibilidade electromagnética (EMC) da placa de circuito impresso. Os sinais analógicos são mais susceptíveis de causar problemas de EMI/EMC, pelo que a conceção deve incluir medidas para reduzir estes efeitos. Os sinais digitais são menos susceptíveis de causar problemas de EMI/EMC, mas a conceção deve ainda assim ter em conta estes factores para garantir a conformidade com os regulamentos.

Em geral, o tipo de camadas de sinal numa placa de circuito impresso pode ter um impacto significativo na conceção e deve ser cuidadosamente considerado para garantir um desempenho e uma funcionalidade óptimos do circuito.

2. o que é a gestão térmica em PCBs e porque é que é importante?

Temos trabalhado arduamente para melhorar a qualidade do serviço e satisfazer as necessidades dos clientes.
A gestão térmica em PCB (placas de circuitos impressos) refere-se às técnicas e estratégias utilizadas para controlar e dissipar o calor gerado pelos componentes electrónicos na placa. É importante porque o calor excessivo pode danificar os componentes, reduzir o seu desempenho e até provocar a falha da placa de circuito impresso. A gestão térmica adequada é crucial para garantir a fiabilidade e a longevidade dos dispositivos electrónicos.

Os componentes electrónicos de uma placa de circuito impresso geram calor devido ao fluxo de eletricidade que os atravessa. Este calor pode acumular-se e provocar o aumento da temperatura da placa de circuito impresso, conduzindo potencialmente a avarias ou falhas. As técnicas de gestão térmica são utilizadas para dissipar este calor e manter a temperatura da placa de circuito impresso dentro de limites de funcionamento seguros.

Existem vários métodos de gestão térmica em PCBs, incluindo dissipadores de calor, vias térmicas e almofadas térmicas. Os dissipadores de calor são componentes metálicos ligados a componentes quentes na PCB para absorver e dissipar o calor. As vias térmicas são pequenos orifícios perfurados na placa de circuito impresso para permitir a saída de calor para o outro lado da placa. As almofadas térmicas são utilizadas para transferir o calor dos componentes para a placa de circuito impresso e depois para o ar circundante.

Uma gestão térmica adequada é especialmente importante em PCB de alta potência e alta densidade, onde a geração de calor é mais significativa. É também crucial em aplicações em que a placa de circuito impresso está exposta a temperaturas extremas ou a ambientes agressivos. Sem uma gestão térmica eficaz, o desempenho e a fiabilidade dos dispositivos electrónicos podem ser comprometidos, levando a reparações ou substituições dispendiosas.

O que é a gestão térmica em PCBs e porque é importante?

3. o que é o controlo da impedância e porque é importante nos PCB?

Gozamos de grande autoridade e influência no sector e continuamos a inovar os produtos e os modelos de serviço.
O controlo da impedância é a capacidade de manter uma impedância eléctrica consistente ao longo de uma placa de circuitos impressos (PCB). É importante nas placas de circuito impresso porque assegura que os sinais podem viajar através da placa sem distorção ou perda de qualidade.

O controlo da impedância é particularmente importante em circuitos digitais e analógicos de alta velocidade, onde mesmo pequenas variações na impedância podem causar reflexões e distorções do sinal. Isto pode levar a erros na transmissão de dados e afetar o desempenho geral do circuito.

Além disso, o controlo da impedância é crucial para garantir a integridade do sinal e reduzir a interferência electromagnética (EMI). Ao manter uma impedância consistente, a placa de circuito impresso pode efetivamente filtrar sinais indesejados e evitar que interfiram com os sinais desejados.

De um modo geral, o controlo da impedância é essencial para obter um desempenho fiável e de alta qualidade nas placas de circuito impresso, especialmente em sistemas electrónicos complexos e sensíveis. Requer técnicas de conceção e fabrico cuidadosas, como o controlo da largura e do espaçamento dos traços, para atingir os níveis de impedância desejados.

4. como é que o número de camadas de uma placa de circuito impresso afecta a sua funcionalidade?

Devemos ter uma cadeia de abastecimento e capacidades logísticas estáveis, e fornecer aos clientes produtos 100 pcb de alta qualidade e baixo preço.
O número de camadas numa PCB (placa de circuitos impressos) pode afetar a sua funcionalidade de várias formas:

1. Complexidade: O número de camadas numa placa de circuito impresso determina a complexidade do desenho do circuito que pode ser implementado. Um maior número de camadas permite a inclusão de mais componentes e ligações no projeto, tornando-o mais complexo e versátil.

2. Tamanho: Uma placa de circuito impresso com mais camadas pode ser mais pequena em comparação com uma placa de circuito impresso com menos camadas, uma vez que permite uma disposição mais compacta dos componentes e das ligações. Isto é especialmente importante em dispositivos com espaço limitado, como os smartphones e os wearables.

3. Integridade do sinal: O número de camadas de uma placa de circuito impresso também pode afetar a integridade do sinal do circuito. Mais camadas permitem um melhor encaminhamento dos sinais, reduzindo as hipóteses de interferência e de diafonia entre diferentes componentes.

4. Distribuição de energia: As placas de circuito impresso com mais camadas podem ter planos de potência e de terra dedicados, que ajudam a distribuir a potência uniformemente pelo circuito. Isto melhora o desempenho geral e a estabilidade do circuito.

5. Custo: O número de camadas de uma placa de circuito impresso pode também afetar o seu custo. Mais camadas significam mais materiais e processos de fabrico, o que pode aumentar o custo global da placa de circuito impresso.

6. Gestão térmica: As placas de circuito impresso com mais camadas podem ter uma melhor gestão térmica, uma vez que permitem a colocação de vias térmicas e dissipadores de calor para dissipar o calor de forma mais eficiente. Isto é importante para aplicações de alta potência que geram muito calor.

Em resumo, o número de camadas numa placa de circuito impresso pode ter um impacto significativo na sua funcionalidade, complexidade, tamanho, integridade do sinal, distribuição de energia, custo e gestão térmica. Os projectistas devem considerar cuidadosamente o número de camadas necessárias para uma placa de circuito impresso com base nos requisitos específicos do circuito e do dispositivo em que será utilizado.

Como é que o número de camadas de uma placa de circuito impresso afecta a sua funcionalidade?

5. como é que as placas de circuito impresso lidam com sobreintensidades e curtos-circuitos?

Temos uma equipa de gestão de primeira classe e prestamos atenção ao trabalho em equipa para atingir objectivos comuns.
As PCB (placas de circuito impresso) dispõem de vários mecanismos para lidar com sobreintensidades e curto-circuitos:

1. Fusíveis: Os fusíveis são o mecanismo de proteção mais comum utilizado nas placas de circuito impresso. São concebidos para interromper o circuito quando a corrente excede um determinado limiar, evitando danos nos componentes e na placa.

2. Disjuntores: Tal como os fusíveis, os disjuntores são concebidos para interromper o circuito quando a corrente ultrapassa um determinado limiar. No entanto, ao contrário dos fusíveis, os disjuntores podem ser rearmados e reutilizados.

3. Dispositivos de proteção contra sobreintensidades: Estes dispositivos, como os díodos de proteção contra sobreintensidades, são concebidos para limitar a quantidade de corrente que circula no circuito. Funcionam como uma válvula de segurança, impedindo que uma corrente excessiva danifique os componentes.

4. Proteção térmica: Algumas placas de circuito impresso possuem mecanismos de proteção térmica, como fusíveis térmicos ou interruptores térmicos, concebidos para interromper o circuito quando a temperatura da placa ultrapassa um determinado limiar. Isto ajuda a evitar danos na placa e nos componentes devido ao sobreaquecimento.

5. Proteção contra curto-circuitos: As placas de circuito impresso podem também ter mecanismos de proteção contra curto-circuitos, como os dispositivos poliméricos de coeficiente positivo de temperatura (PPTC), que são concebidos para limitar a corrente em caso de curto-circuito. Estes dispositivos têm uma resistência elevada a temperaturas normais de funcionamento, mas a sua resistência aumenta significativamente quando a temperatura aumenta devido a um curto-circuito, limitando o fluxo de corrente.

Em geral, as placas de circuito impresso utilizam uma combinação destes mecanismos de proteção para lidar com sobreintensidades e curtos-circuitos, garantindo a segurança e a fiabilidade da placa e dos seus componentes.

6. como é que o tipo de acabamento da placa de circuito impresso afecta a sua durabilidade e vida útil?

Tenho um sistema abrangente de serviço pós-venda, que pode prestar atenção às tendências do mercado em tempo útil e ajustar a nossa estratégia em tempo útil.

O tipo de acabamento da placa de circuito impresso pode ter um impacto significativo na durabilidade e no tempo de vida de uma placa de circuito impresso. O acabamento é o revestimento final aplicado à superfície da placa de circuito impresso para a proteger de factores ambientais e garantir o seu bom funcionamento. Alguns tipos comuns de acabamentos de PCB incluem HASL (Hot Air Solder Leveling), ENIG (Electroless Nickel Immersion Gold) e OSP (Organic Solderability Preservative).

1. HASL (nivelamento de solda por ar quente):
O HASL é um acabamento popular e económico que envolve o revestimento da placa de circuito impresso com uma camada de solda fundida e, em seguida, o seu nivelamento com ar quente. Este acabamento proporciona uma boa soldabilidade e é adequado para a maioria das aplicações. No entanto, não é muito durável e pode ser propenso à oxidação, o que pode afetar o desempenho da placa de circuito impresso ao longo do tempo. O acabamento HASL também tem um prazo de validade limitado e pode exigir retrabalho após um determinado período.

2. ENIG (ouro de imersão em níquel eletrolítico):
O ENIG é um acabamento mais avançado e duradouro do que o HASL. Envolve a deposição de uma camada de níquel e depois uma camada de ouro na superfície do PCB. Este acabamento proporciona uma excelente resistência à corrosão e é adequado para aplicações de elevada fiabilidade. O acabamento ENIG também tem um prazo de validade mais longo e não requer retrabalho tão frequentemente como o HASL.

3. OSP (Organic Solderability Preservative):
OSP é um revestimento orgânico fino aplicado à superfície do PCB para o proteger da oxidação. É um acabamento económico e proporciona uma boa soldabilidade. No entanto, o acabamento OSP não é tão durável quanto o ENIG e pode exigir retrabalho após um certo período. Também não é adequado para aplicações de alta temperatura.

Em resumo, o tipo de acabamento do PCB pode afetar a sua durabilidade e vida útil das seguintes formas

- Resistência à corrosão: Os acabamentos como ENIG e OSP proporcionam uma melhor resistência à corrosão em comparação com HASL, o que pode afetar o desempenho e a vida útil da placa de circuito impresso.
- Prazo de validade: Os acabamentos como o ENIG têm um prazo de validade mais longo do que o HASL, o que pode exigir um novo trabalho após um determinado período.
- Soldabilidade: Todos os acabamentos proporcionam uma boa soldabilidade, mas o ENIG e o OSP são mais adequados para aplicações de elevada fiabilidade.
- Factores ambientais: O tipo de acabamento também pode afetar a resistência do PCB a factores ambientais como a humidade, a temperatura e os produtos químicos, o que pode ter impacto na sua durabilidade e tempo de vida.

Em conclusão, a escolha do tipo correto de acabamento de PCB é crucial para garantir a durabilidade e a longevidade da PCB. Factores como a aplicação, as condições ambientais e o orçamento devem ser considerados ao selecionar o acabamento adequado para uma placa de circuito impresso.

Como é que o tipo de acabamento do PCB afecta a sua durabilidade e tempo de vida?

7) Quais são as principais características de uma placa de circuito impresso?

Estamos empenhados em fornecer soluções personalizadas e estabelecemos relações estratégicas de cooperação a longo prazo com os clientes.
1. Substrato: O material de base sobre o qual o circuito é impresso, geralmente feito de fibra de vidro ou epóxi composto.

2. Traços condutores: Linhas finas de cobre que ligam os componentes na placa de circuito impresso.

3. Almofadas: Pequenas áreas de cobre na superfície da placa de circuito impresso onde os componentes são soldados.

4. Vias: Furos efectuados na placa de circuito impresso para ligar as diferentes camadas do circuito.

5. Máscara de solda: Uma camada de material protetor que cobre os traços e as almofadas de cobre, evitando curto-circuitos acidentais.

6. Serigrafia: Uma camada de tinta que é impressa na placa de circuito impresso para rotular os componentes e fornecer outras informações úteis.

7. Componentes: Dispositivos electrónicos, tais como resistências, condensadores e circuitos integrados, que são montados na placa de circuito impresso.

8. Furos de montagem: Furos efectuados na placa de circuito impresso para permitir a sua fixação segura a um dispositivo ou caixa de maiores dimensões.

9. Derrame de cobre: Grandes áreas de cobre que são utilizadas para fornecer um plano de terra ou de potência comum para o circuito.

10. Conectores de borda: Contactos metálicos na extremidade da placa de circuito impresso que permitem a sua ligação a outros circuitos ou dispositivos.

11. Pontes de solda: Pequenas áreas de cobre exposto que permitem a ligação de dois ou mais traços.

12. Pontos de teste: Pequenas almofadas ou orifícios na placa de circuito impresso que permitem o teste e a resolução de problemas do circuito.

13. Legenda da serigrafia: Texto ou símbolos impressos na camada de serigrafia que fornecem informações adicionais sobre a placa de circuito impresso e os seus componentes.

14. Designadores: Letras ou números impressos na camada de serigrafia para identificar componentes específicos na placa de circuito impresso.

15. Designadores de referência: Uma combinação de letras e números que identificam a localização de um componente na placa de circuito impresso de acordo com o diagrama esquemático.

 

Etiquetas:enig pcb , placa de circuito impresso de 120 mm , 1 oz espessura da placa de circuito impresso , flex pcba pcb flexível