placa de circuito impresso de 100 camadas

Durante mais de duas décadas, a MTI tem-se dedicado a fornecer serviços abrangentes de fabrico OEM/ODM a clientes em todo o mundo. Com a nossa vasta experiência em montagem de PCB, estabelecemos fortes relações de colaboração com distribuidores de componentes autorizados. Isto permite-nos obter quaisquer componentes necessários a preços competitivos, assegurando uma boa relação custo-eficácia para os nossos clientes.

Nome do produto placa de circuito impresso de 100 camadas
Palavra-chave 12 layer pcb,10 layer pcb,104 keyboard pcb,1000w amplifier pcb,3080 founders pcb
Local de origem China
Espessura da placa 1~3,2mm
Sectores aplicáveis computer applications, etc.
Serviço Fabrico OEM/ODM
Certificado ISO-9001:2015, ISO-14001:2015,ISO-13485:2012.UL/CSA
Cor da máscara de solda Vermelho
Vantagem Mantemos a boa qualidade e o preço competitivo para garantir o benefício dos nossos clientes
País de vendas All over the world for example:Hungary,Cote d’Ivoire,Kuwait,Grenada,Brunei

 

Um dos nossos serviços de conceção de hardware é o fabrico de pequenos lotes, que lhe permite testar rapidamente a sua ideia e verificar a funcionalidade da conceção de hardware e da placa PCB.

Os seus produtos são sempre entregues antes do prazo e com a melhor qualidade.

Temos uma vasta experiência em engenharia para criar um esquema utilizando uma plataforma de software como o Altium Designer. Este layout mostra-lhe o aspeto exato e a colocação dos componentes na sua placa.

Guia de FAQs

1) Uma placa de circuito impresso pode ter diferentes níveis de flexibilidade?

We have a wide range of 100 layer pcb customer groups and establishes long -term cooperative relationships with partners.
Sim, uma PCB (placa de circuito impresso) pode ter diferentes níveis de flexibilidade, dependendo da sua conceção e dos materiais utilizados. Algumas PCB são rígidas e não podem dobrar ou flexionar de todo, enquanto outras são concebidas para serem flexíveis e podem dobrar ou torcer até um certo grau. Existem também PCBs que têm uma combinação de áreas rígidas e flexíveis, conhecidas como PCBs flex-rígidas. O nível de flexibilidade de uma placa de circuito impresso é determinado por factores como o tipo de material do substrato, a espessura e o número de camadas e o tipo de conceção do circuito.

2) Quais são as principais características de uma placa de circuito impresso?

Estamos empenhados em fornecer soluções personalizadas e estabelecemos relações estratégicas de cooperação a longo prazo com os clientes.
1. Substrato: O material de base sobre o qual o circuito é impresso, geralmente feito de fibra de vidro ou epóxi composto.

2. Traços condutores: Linhas finas de cobre que ligam os componentes na placa de circuito impresso.

3. Almofadas: Pequenas áreas de cobre na superfície da placa de circuito impresso onde os componentes são soldados.

4. Vias: Furos efectuados na placa de circuito impresso para ligar as diferentes camadas do circuito.

5. Máscara de solda: Uma camada de material protetor que cobre os traços e as almofadas de cobre, evitando curto-circuitos acidentais.

6. Serigrafia: Uma camada de tinta que é impressa na placa de circuito impresso para rotular os componentes e fornecer outras informações úteis.

7. Componentes: Dispositivos electrónicos, tais como resistências, condensadores e circuitos integrados, que são montados na placa de circuito impresso.

8. Furos de montagem: Furos efectuados na placa de circuito impresso para permitir a sua fixação segura a um dispositivo ou caixa de maiores dimensões.

9. Derrame de cobre: Grandes áreas de cobre que são utilizadas para fornecer um plano de terra ou de potência comum para o circuito.

10. Conectores de borda: Contactos metálicos na extremidade da placa de circuito impresso que permitem a sua ligação a outros circuitos ou dispositivos.

11. Pontes de solda: Pequenas áreas de cobre exposto que permitem a ligação de dois ou mais traços.

12. Pontos de teste: Pequenas almofadas ou orifícios na placa de circuito impresso que permitem o teste e a resolução de problemas do circuito.

13. Legenda da serigrafia: Texto ou símbolos impressos na camada de serigrafia que fornecem informações adicionais sobre a placa de circuito impresso e os seus componentes.

14. Designadores: Letras ou números impressos na camada de serigrafia para identificar componentes específicos na placa de circuito impresso.

15. Designadores de referência: Uma combinação de letras e números que identificam a localização de um componente na placa de circuito impresso de acordo com o diagrama esquemático.

3. como é que o tipo de material laminado utilizado afecta o design da placa de circuito impresso?

As one of the top 100 layer pcb manufacturers in China, we take this very seriously.
O tipo de material laminado utilizado pode afetar a conceção da placa de circuito impresso de várias formas:

1. Propriedades eléctricas: Diferentes materiais laminados têm diferentes propriedades eléctricas, como a constante dieléctrica, a tangente de perda e a resistência de isolamento. Estas propriedades podem afetar a integridade do sinal e a impedância da placa de circuito impresso, o que pode ter impacto no desempenho do circuito.

2. Propriedades térmicas: Alguns materiais laminados têm melhor condutividade térmica do que outros, o que pode afetar a dissipação de calor da placa de circuito impresso. Isto é especialmente importante para aplicações de alta potência em que a gestão do calor é crucial.

3. Propriedades mecânicas: As propriedades mecânicas do material laminado, como a rigidez e a flexibilidade, podem ter impacto na durabilidade e fiabilidade globais da placa de circuito impresso. Isto é importante para as aplicações em que a placa de circuito impresso pode ser sujeita a tensões físicas ou vibrações.

4. Custo: Os diferentes materiais laminados têm custos diferentes, o que pode afetar o custo global da placa de circuito impresso. Alguns materiais podem ser mais caros, mas oferecem um melhor desempenho, enquanto outros podem ser mais económicos, mas têm um desempenho inferior.

5. Processo de fabrico: O tipo de material laminado utilizado também pode ter impacto no processo de fabrico da placa de circuito impresso. Alguns materiais podem exigir equipamento ou processos especializados, o que pode afetar o tempo e o custo de produção.

6. Compatibilidade com componentes: Certos materiais laminados podem não ser compatíveis com determinados componentes, como os componentes de alta frequência ou os componentes que exigem temperaturas de soldadura específicas. Isto pode limitar as opções de conceção e afetar a funcionalidade da placa de circuito impresso.

De um modo geral, o tipo de material laminado utilizado pode ter um impacto significativo na conceção, no desempenho e no custo de uma placa de circuito impresso. É importante considerar cuidadosamente os requisitos do circuito e escolher um material laminado adequado para garantir um desempenho e fiabilidade óptimos.

4.How does the type of vias used affect the performance of a PCB?

Being one of the top 100 layer pcb manufacturers in China, We attach great importance to this detail.
O tipo de vias utilizadas pode afetar o desempenho de uma PCB de várias formas:

1. Integridade do sinal: As vias podem atuar como descontinuidades no percurso do sinal, causando reflexos e degradação do sinal. O tipo de via utilizada pode afetar a impedância e a integridade do sinal da placa de circuito impresso. Para sinais de alta velocidade, é importante utilizar vias de impedância controlada para manter a integridade do sinal.

2. Desempenho elétrico: O tipo de via utilizada também pode afetar o desempenho elétrico da placa de circuito impresso. Por exemplo, as vias através de orifícios têm menor resistência e indutância do que as vias cegas ou enterradas, o que pode afetar o fornecimento de energia e a transmissão de sinais na placa de circuito impresso.

3. Desempenho térmico: As vias também podem desempenhar um papel no desempenho térmico de uma placa de circuito impresso. As vias de passagem podem atuar como vias térmicas, permitindo que o calor se dissipe de uma camada para outra. As vias cegas e enterradas, por outro lado, podem reter o calor e afetar a gestão térmica global da placa de circuito impresso.

4. Custo de fabrico: O tipo de via utilizada também pode ter impacto no custo de fabrico da placa de circuito impresso. As vias cegas e enterradas requerem processos mais complexos e dispendiosos, ao passo que as vias com orifícios de passagem são relativamente mais simples e mais baratas de fabricar.

5. Dimensão e densidade da placa de circuito impresso: O tipo de via utilizada também pode afetar o tamanho e a densidade da placa de circuito impresso. As vias cegas e enterradas ocupam menos espaço na superfície da placa de circuito impresso, o que permite desenhos de maior densidade. Isto pode ser benéfico para PCB mais pequenas e compactas.

De um modo geral, o tipo de vias utilizadas pode ter um impacto significativo no desempenho, no custo e na conceção de uma placa de circuito impresso. É importante considerar cuidadosamente o tipo de vias necessárias para uma aplicação específica, a fim de garantir um desempenho e uma funcionalidade óptimos da placa de circuito impresso.

5.Qual a importância da largura e do espaçamento dos traços num projeto de PCB?

Our 100 layer pcb products have competitive and differentiated advantages, and actively promote digital transformation and innovation.
A largura e o espaçamento dos traços num desenho de PCB são factores cruciais que podem afetar grandemente o desempenho e a fiabilidade do circuito. Eis algumas razões para tal:

1. Capacidade de transporte de corrente: A largura do traço determina a quantidade de corrente que pode fluir através do traço sem causar aquecimento excessivo. Se a largura do traço for demasiado estreita, pode provocar um sobreaquecimento e danificar o circuito.

2. Queda de tensão: A largura do traço também afecta a queda de tensão através do traço. Um traço estreito terá uma resistência mais elevada, resultando numa maior queda de tensão. Isto pode causar uma diminuição do nível de tensão no final do traço, afectando o desempenho do circuito.

3. Integridade do sinal: O espaçamento entre traços é fundamental para manter a integridade do sinal. Se o espaçamento for demasiado estreito, pode dar origem a diafonia e interferência entre sinais, resultando em erros e mau funcionamento do circuito.

4. Gestão térmica: O espaçamento entre traços também desempenha um papel na gestão térmica. Um espaçamento adequado entre traços permite uma melhor circulação de ar, o que ajuda a dissipar o calor do circuito. Isto é especialmente importante para circuitos de alta potência.

5. Restrições de fabrico: A largura e o espaçamento dos traços também têm de ser considerados no processo de fabrico. Se os traços estiverem demasiado próximos uns dos outros, pode ser difícil gravar e inspecionar a placa de circuito impresso, o que pode dar origem a defeitos de fabrico.

Em resumo, a largura e o espaçamento dos traços são parâmetros críticos que devem ser cuidadosamente considerados na conceção da placa de circuito impresso para garantir o bom funcionamento e a fiabilidade do circuito.

How important is the trace width and spacing in a 100 layer pcb design?

6.What is the maximum current a PCB can handle?

We maintain a certain amount of R&D investment every year and continuously improve operational efficiency to provide better services to our cooperative customers.
The maximum current a PCB can handle depends on various factors such as the thickness and width of the copper traces, the type of material used for the PCB, and the ambient temperature. Generally, a standard PCB can handle currents up to 10-20 amps, while high-power PCBs can handle currents up to 50-100 amps. However, it is always recommended to consult with a PCB manufacturer for specific current handling capabilities for a particular PCB design.

7.Can PCBs be designed to withstand high vibration or shock?

Estabelecemos parcerias estáveis e de longo prazo com os nossos fornecedores, pelo que temos grandes vantagens em termos de preço, custo e garantia de qualidade.
Sim, as PCB podem ser concebidas para resistir a vibrações ou choques elevados, incorporando determinadas características de conceção e utilizando materiais adequados. Algumas formas de tornar uma PCB mais resistente a vibrações e choques incluem:

1. Utilização de um material de substrato de PCB mais espesso e mais rígido, como FR-4 ou cerâmica, para proporcionar um melhor suporte estrutural e reduzir a flexão.

2. Acrescentar estruturas de suporte adicionais, tais como orifícios de montagem ou reforços, para fixar a PCB ao chassis ou à caixa.

3. Utilização de componentes mais pequenos e compactos para reduzir o peso e a dimensão globais da placa de circuito impresso, o que pode ajudar a minimizar os efeitos da vibração.

4. Utilizar materiais de absorção de choques, como borracha ou espuma, entre a placa de circuito impresso e a superfície de montagem para absorver e amortecer as vibrações.

5. Conceber a disposição da placa de circuito impresso para minimizar o comprimento e o número de traços e vias, o que pode reduzir o risco de tensões mecânicas e falhas.

6. Utilização de componentes com tecnologia de montagem em superfície (SMT) em vez de componentes com orifícios passantes, uma vez que são menos susceptíveis de serem danificados por vibrações.

7. Incorporação de um revestimento isolante ou de materiais de encapsulamento para proteger a placa de circuito impresso e os componentes da humidade e das tensões mecânicas.

É importante ter em conta os requisitos específicos e o ambiente em que a placa de circuito impresso será utilizada aquando da conceção para uma elevada resistência a vibrações ou choques. A consulta de um especialista em conceção de PCB também pode ajudar a garantir que a PCB é corretamente concebida para resistir a estas condições.

8.Can PCBs have multiple power planes?

Mantemos um crescimento estável através de operações de capital razoáveis, concentramo-nos nas tendências de desenvolvimento da indústria e nas tecnologias de ponta, e concentramo-nos na qualidade dos produtos e no desempenho da segurança.
Sim, as placas de circuito impresso podem ter vários planos de potência. Os planos de potência são camadas de cobre numa PCB que são utilizadas para distribuir sinais de potência e de terra por toda a placa. Os planos de potência múltiplos podem ser utilizados para fornecer tensões diferentes ou para separar sinais analógicos sensíveis de sinais digitais ruidosos. Podem também ser utilizados para aumentar a capacidade de transporte de corrente da placa. O número e a disposição dos planos de potência numa placa de circuito impresso dependem dos requisitos específicos do projeto e podem variar muito.

 

Etiquetas:printed circuit board assembly process , 06141 pcb 305