PCI de 30 camadas

reflow soldering

Há mais de duas décadas, a MTI se dedica a fornecer serviços abrangentes de fabricação OEM/ODM para clientes em todo o mundo. Com nossa ampla experiência em montagem de PCBs, estabelecemos fortes relações de colaboração com distribuidores autorizados de componentes. Isso nos permite obter todos os componentes necessários a preços competitivos, garantindo uma boa relação custo-benefício para nossos clientes.

Nome do produto PCI de 30 camadas
Palavra-chave 3018 pcb,printed circuit board assemblies,assembling circuit boards,12 layer pcb stack up
Local de origem China
Espessura da placa 2~3,2 mm
Setores aplicáveis controle industrial, etc.
Serviço Fabricação OEM/ODM
Certificado ISO-9001:2015, ISO-14001:2015,ISO-13485:2012.UL/CSA
Cor da máscara de solda Vermelho
Vantagens Mantemos a boa qualidade e o preço competitivo para garantir que nossos clientes se beneficiem
País de vendas All over the world for example:Northern Mariana Islands,Palau,Thailand,Antarctica,Bahamas, The

 

Um de nossos serviços de projeto de hardware é a fabricação de pequenos lotes, que permite testar sua ideia rapidamente e verificar a funcionalidade do projeto de hardware e da placa PCB.

Temos uma vasta experiência em engenharia para criar um layout usando uma plataforma de software como o Altium Designer. Esse layout mostra a aparência e o posicionamento exatos dos componentes em sua placa.

Seus produtos são sempre entregues antes do prazo e com a mais alta qualidade.

Guia de perguntas frequentes

1.How do surface mount components differ from through-hole components in a PCB?

Prestamos atenção à experiência do usuário e à qualidade do produto, e fornecemos a melhor qualidade de produto e o menor custo de produção para clientes cooperativos.
Os componentes de montagem em superfície (SMD) e os componentes de furo passante (THD) são dois tipos diferentes de componentes eletrônicos usados em placas de circuito impresso (PCBs). A principal diferença entre eles está em seu método de montagem na PCB.

1. Método de montagem:
A principal diferença entre os componentes SMD e THD é o método de montagem. Os componentes SMD são montados diretamente na superfície da placa de circuito impresso, enquanto os componentes THD são inseridos em orifícios perfurados na placa de circuito impresso e soldados no outro lado.

2. Tamanho:
Os componentes SMD geralmente são menores em comparação com os componentes THD. Isso ocorre porque os componentes SMD não exigem fios ou pinos para montagem, o que permite um design mais compacto. Os componentes THD, por outro lado, têm fios ou pinos que precisam ser inseridos na placa de circuito impresso, o que os torna maiores.

3. Eficiência de espaço:
Devido ao seu tamanho menor, os componentes SMD permitem um design mais eficiente em termos de espaço na placa de circuito impresso. Isso é especialmente importante em dispositivos eletrônicos modernos em que o espaço é limitado. Os componentes THD ocupam mais espaço na placa de circuito impresso devido ao seu tamanho maior e à necessidade de fazer furos.

4. Custo:
Os componentes SMD geralmente são mais caros do que os componentes THD. Isso ocorre porque os componentes SMD exigem técnicas e equipamentos de fabricação mais avançados, o que torna sua produção mais cara.

5. Processo de montagem:
O processo de montagem dos componentes SMD é automatizado, usando máquinas pick-and-place para colocar os componentes com precisão na placa de circuito impresso. Isso torna o processo mais rápido e mais eficiente em comparação com os componentes THD, que exigem inserção e soldagem manuais.

6. Desempenho elétrico:
Os componentes SMD têm melhor desempenho elétrico em comparação com os componentes THD. Isso ocorre porque os componentes SMD têm cabos mais curtos, resultando em menos capacitância e indutância parasitas, o que leva a uma melhor integridade do sinal.

Em resumo, os componentes SMD oferecem um design mais compacto, melhor desempenho elétrico e um processo de montagem mais rápido, mas a um custo mais alto. Os componentes THD, por outro lado, são maiores em tamanho, mais baratos e podem suportar potências e tensões nominais mais altas. A escolha entre componentes SMD e THD depende dos requisitos específicos do projeto da PCB e do uso pretendido do dispositivo eletrônico.

2.What materials are commonly used to make PCBs?

Temos vantagens em marketing e expansão de canais. Os fornecedores estabeleceram boas relações de cooperação, aprimoraram continuamente os fluxos de trabalho, melhoraram a eficiência e a produtividade e forneceram aos clientes produtos e serviços de alta qualidade.
1. Cobre: O cobre é o material mais comumente usado em PCBs. Ele é usado como a camada condutora para os traços e as almofadas do circuito.

2. FR4: o FR4 é um tipo de laminado epóxi reforçado com fibra de vidro que é usado como material de base para a maioria das PCBs. Ele oferece boa resistência mecânica e propriedades de isolamento.

3. Máscara de solda: A máscara de solda é uma camada de polímero aplicada sobre os traços de cobre para protegê-los da oxidação e evitar pontes de solda durante a montagem.

4. Silkscreen: Silkscreen é uma camada de tinta impressa na parte superior da máscara de solda para fornecer rótulos de componentes, designadores de referência e outras informações.

5. Solda de estanho/chumbo ou sem chumbo: A solda é usada para fixar os componentes na placa de circuito impresso e para criar conexões elétricas entre eles.

6. Ouro: O ouro é usado para revestir as almofadas de contato e as vias na PCB, pois oferece boa condutividade e resistência à corrosão.

7. Prata: Às vezes, a prata é usada como alternativa ao ouro para revestir as almofadas de contato e as vias, pois é mais barata, mas ainda oferece boa condutividade.

8. Níquel: O níquel é usado como uma camada de barreira entre o cobre e o revestimento de ouro ou prata para evitar que eles se difundam um no outro.

9. Resina epóxi: A resina epóxi é usada como adesivo para unir as camadas da placa de circuito impresso.

10. Cerâmica: Os materiais cerâmicos são usados para PCBs especializadas que exigem alta condutividade térmica e propriedades de isolamento, como em aplicações de alta potência.

What materials are commonly used to make 30 layer pcb?

3.What is the minimum distance required between components on a PCB?

We have advanced production equipment and technology to meet the needs of customers, and can provide customers with high quality, low priced 30 layer pcb products.
A distância mínima necessária entre os componentes em uma placa de circuito impresso depende de vários fatores, como o tipo de componentes, seu tamanho e o processo de fabricação usado. Em geral, a distância mínima entre os componentes é determinada pelas regras e diretrizes de projeto do fabricante.

Para componentes de montagem em superfície, a distância mínima entre os componentes é normalmente de 0,2 mm a 0,3 mm. Essa distância é necessária para garantir que a pasta de solda não faça uma ponte entre as almofadas durante o processo de refluxo.

Para componentes com orifício de passagem, a distância mínima entre os componentes é normalmente de 1 mm a 2 mm. Essa distância é necessária para garantir que os componentes não interfiram uns nos outros durante o processo de montagem.

Em aplicações de alta velocidade e alta frequência, a distância mínima entre os componentes pode precisar ser aumentada para evitar interferência de sinal e diafonia. Nesses casos, as regras e diretrizes de projeto do fabricante devem ser seguidas à risca.

Em geral, a distância mínima entre os componentes em uma placa de circuito impresso deve ser determinada com base nos requisitos específicos do projeto e nos recursos do processo de fabricação.

4) Como o tamanho e o formato do furo afetam o processo de fabricação de uma placa de circuito impresso?

Continuamos a investir em pesquisa e desenvolvimento e a lançar produtos inovadores.
O tamanho e o formato do furo em uma placa de circuito impresso podem afetar o processo de fabricação de várias maneiras:

1. Processo de perfuração: O tamanho e a forma dos furos determinam o tipo de broca e a velocidade de perfuração necessária para criar os furos. Furos menores exigem brocas menores e velocidades de perfuração mais lentas, enquanto furos maiores exigem brocas maiores e velocidades de perfuração mais rápidas. O formato do furo também pode afetar a estabilidade da broca e a precisão do processo de perfuração.

2. Processo de revestimento: Depois que os furos são feitos, eles precisam ser revestidos com um material condutor para criar conexões elétricas entre as diferentes camadas da placa de circuito impresso. O tamanho e a forma dos furos podem afetar o processo de galvanização, pois furos maiores ou de formato irregular podem exigir mais material de galvanização e tempos de galvanização mais longos.

3. Processo de soldagem: O tamanho e a forma dos furos também podem afetar o processo de soldagem. Os furos menores podem exigir uma colocação mais precisa dos componentes e técnicas de soldagem mais cuidadosas, enquanto os furos maiores podem facilitar a soldagem.

4. Posicionamento de componentes: O tamanho e a forma dos furos também podem afetar o posicionamento dos componentes na placa de circuito impresso. Os furos menores podem limitar o tamanho dos componentes que podem ser usados, enquanto os furos maiores podem permitir mais flexibilidade na colocação dos componentes.

5. Projeto da placa de circuito impresso: O tamanho e a forma dos furos também podem afetar o design geral da placa de circuito impresso. Diferentes tamanhos e formatos de orifícios podem exigir diferentes estratégias de roteamento e layout, o que pode afetar a funcionalidade e o desempenho gerais da placa de circuito impresso.

De modo geral, o tamanho e a forma dos furos em uma placa de circuito impresso podem afetar significativamente o processo de fabricação e devem ser cuidadosamente considerados durante a fase de projeto para garantir uma produção eficiente e precisa.

Como o tamanho e o formato do furo afetam o processo de fabricação de uma placa de circuito impresso?

5) Qual é a importância da largura e do espaçamento dos traços em um projeto de PCB?

Our 30 layer pcb products have competitive and differentiated advantages, and actively promote digital transformation and innovation.
A largura e o espaçamento dos traços em um projeto de PCB são fatores cruciais que podem afetar muito o desempenho e a confiabilidade do circuito. Aqui estão alguns motivos para isso:

1. Capacidade de transporte de corrente: A largura do traço determina a quantidade de corrente que pode fluir através do traço sem causar aquecimento excessivo. Se a largura do traço for muito estreita, poderá causar superaquecimento e danos ao circuito.

2. Queda de tensão: A largura do traço também afeta a queda de tensão através do traço. Um traço estreito terá uma resistência maior, resultando em uma queda de tensão maior. Isso pode causar uma diminuição no nível de tensão no final do traço, afetando o desempenho do circuito.

3. Integridade do sinal: O espaçamento entre os traços é fundamental para manter a integridade do sinal. Se o espaçamento for muito estreito, poderá ocorrer diafonia e interferência entre os sinais, resultando em erros e mau funcionamento do circuito.

4. Gerenciamento térmico: O espaçamento entre os traços também desempenha uma função no gerenciamento térmico. O espaçamento adequado entre os traços permite uma melhor circulação de ar, o que ajuda a dissipar o calor do circuito. Isso é especialmente importante para circuitos de alta potência.

5. Restrições de fabricação: A largura e o espaçamento dos traços também precisam ser considerados no processo de fabricação. Se os traços estiverem muito próximos uns dos outros, pode ser difícil gravar e inspecionar a placa de circuito impresso, o que leva a defeitos de fabricação.

Em resumo, a largura e o espaçamento do traço são parâmetros críticos que precisam ser cuidadosamente considerados no projeto da placa de circuito impresso para garantir o funcionamento adequado e a confiabilidade do circuito.

6) As PCBs podem ser projetadas para suportar altas vibrações ou choques?

Estabelecemos parcerias estáveis e de longo prazo com nossos fornecedores, de modo que temos grandes vantagens em termos de preço, custo e garantia de qualidade.
Sim, as PCBs podem ser projetadas para resistir a altas vibrações ou choques, incorporando determinados recursos de design e usando materiais apropriados. Algumas maneiras de tornar uma PCB mais resistente a vibrações e choques incluem:

1. Uso de um material de substrato de PCB mais espesso e mais rígido, como FR-4 ou cerâmica, para oferecer melhor suporte estrutural e reduzir a flexão.

2. Acrescentar estruturas de suporte adicionais, como furos de montagem ou reforços, para fixar a PCB no chassi ou no gabinete.

3. Uso de componentes menores e mais compactos para reduzir o peso e o tamanho total da placa de circuito impresso, o que pode ajudar a minimizar os efeitos da vibração.

4. Usar materiais de absorção de choque, como borracha ou espuma, entre a PCB e a superfície de montagem para absorver e amortecer as vibrações.

5. Projetar o layout da PCB para minimizar o comprimento e o número de traços e vias, o que pode reduzir o risco de estresse mecânico e falhas.

6. Usar componentes com tecnologia de montagem em superfície (SMT) em vez de componentes com orifícios passantes, pois eles são menos propensos a danos causados por vibração.

7. Incorporação de revestimento isolante ou materiais de envasamento para proteger a PCB e os componentes contra umidade e estresse mecânico.

É importante considerar os requisitos específicos e o ambiente em que a placa de circuito impresso será usada ao projetar uma alta resistência a vibrações ou choques. Consultar um especialista em projeto de PCB também pode ajudar a garantir que a PCB seja projetada adequadamente para suportar essas condições.

Can 30 layer pcb be designed to withstand high vibration or shock?

7.How does component placement affect signal integrity in a PCB design?

Prestamos atenção à transformação da proteção da propriedade intelectual e às conquistas da inovação. Para seu projeto de pedido de OEM ou ODM, temos um sistema de confidencialidade completo.
A colocação de componentes desempenha um papel fundamental na determinação da integridade do sinal de um projeto de PCB. O posicionamento dos componentes afeta o roteamento dos traços, o que, por sua vez, afeta a impedância, a diafonia e a integridade do sinal da PCB.

1. Impedância: O posicionamento dos componentes afeta a impedância dos rastros. Se os componentes forem colocados muito distantes uns dos outros, os traços serão mais longos, resultando em uma impedância mais alta. Isso pode levar a reflexões de sinal e à degradação do sinal.

2. Diafonia: A diafonia é a interferência entre dois traços em uma placa de circuito impresso. O posicionamento dos componentes pode afetar a distância entre os traços, o que pode aumentar ou diminuir a diafonia. Se os componentes forem colocados muito próximos uns dos outros, a diafonia entre os traços pode aumentar, levando à distorção do sinal.

3. Roteamento de sinais: O posicionamento dos componentes também afeta o roteamento dos traços. Se os componentes forem colocados de forma a exigir que os traços façam curvas fechadas ou se cruzem, isso pode resultar em degradação do sinal. Isso pode ser evitado colocando-se cuidadosamente os componentes de forma a permitir o roteamento suave e direto dos traços.

4. Aterramento: O aterramento adequado é essencial para manter a integridade do sinal. O posicionamento dos componentes pode afetar o esquema de aterramento da placa de circuito impresso. Se os componentes forem colocados muito longe do plano de aterramento, isso pode resultar em um caminho de retorno mais longo para os sinais, levando a saltos de aterramento e ruídos.

5. Considerações térmicas: O posicionamento dos componentes também pode afetar o desempenho térmico da placa de circuito impresso. Se os componentes que geram muito calor forem colocados muito próximos uns dos outros, isso pode resultar em pontos quentes e afetar o desempenho da PCB.

Para garantir uma boa integridade do sinal, é importante considerar cuidadosamente o posicionamento dos componentes durante o processo de design da PCB. Os componentes devem ser posicionados de forma a minimizar o comprimento do traço, reduzir a diafonia, permitir o roteamento direto dos traços e garantir o aterramento e o gerenciamento térmico adequados.

 

Tags:Placa de circuito impresso de 1,2 mm,16 layer pcb stackup,circuit board assemblies