1.6t pcb

Depuis plus de vingt ans, MTI se consacre à la fourniture de services de fabrication OEM/ODM complets à des clients du monde entier. Grâce à notre grande expertise en matière d'assemblage de circuits imprimés, nous avons établi de solides relations de collaboration avec des distributeurs de composants agréés. Cela nous permet de nous procurer tous les composants nécessaires à des prix compétitifs, garantissant ainsi la rentabilité pour nos clients.

Nom du produit 1.6t pcb
Mot-clé processus d'assemblage de circuits imprimés,épaisseur de cuivre de 1 oz pour circuits imprimés,antenne pour circuits imprimés 2,4 ghz,assemblage de circuits imprimés prototypes,assemblage de circuits imprimés en Chine
Lieu d'origine Chine
Épaisseur du panneau 1~3,2mm
Industries concernées les nouvelles énergies, etc.
Service Fabrication OEM/ODM
Certificat ISO-9001:2015, ISO-14001:2015,ISO-13485:2012.UL/CSA
Couleur du masque de soudure Noir
Avantage Nous maintenons une bonne qualité et des prix compétitifs afin de garantir le bénéfice de nos clients.
Pays de vente Dans le monde entier, par exemple : Barbade, Égypte, Mali, Venezuela, Hongrie, Estonie, Porto Rico, Fidji.

 

Nous disposons d'une riche expérience d'ingénieur pour créer un layout à l'aide d'une plateforme logicielle telle qu'Altium Designer. Ce schéma vous montre l'aspect et l'emplacement exacts des composants sur votre carte.

L'un de nos services de conception de matériel est la fabrication en petites séries, qui vous permet de tester rapidement votre idée et de vérifier la fonctionnalité de la conception du matériel et de la carte de circuit imprimé.

Les produits livrés sont toujours en avance sur le calendrier et de la plus haute qualité.

Guide des FAQ

1) Quelle est la distance minimale requise entre les composants d'un circuit imprimé ?

Nous disposons d'un équipement de production et d'une technologie de pointe pour répondre aux besoins des clients, et nous pouvons leur fournir des produits de circuits imprimés de 1,6 t de haute qualité et à bas prix.
La distance minimale requise entre les composants d'un circuit imprimé dépend de divers facteurs tels que le type de composants, leur taille et le processus de fabrication utilisé. En général, la distance minimale entre les composants est déterminée par les règles et directives de conception du fabricant.

Pour les composants montés en surface, la distance minimale entre les composants est généralement de 0,2 mm à 0,3 mm. Cette distance est nécessaire pour s'assurer que la pâte à braser ne passe pas entre les plots pendant le processus de refusion.

Pour les composants à trous traversants, la distance minimale entre les composants est généralement de 1 à 2 mm. Cette distance est nécessaire pour garantir que les composants n'interfèrent pas les uns avec les autres au cours du processus d'assemblage.

Dans les applications à haute vitesse et à haute fréquence, il peut être nécessaire d'augmenter la distance minimale entre les composants afin d'éviter les interférences et la diaphonie des signaux. Dans ce cas, il convient de respecter scrupuleusement les règles et directives de conception du fabricant.

Globalement, la distance minimale entre les composants d'un circuit imprimé doit être déterminée en fonction des exigences spécifiques de la conception et des capacités du processus de fabrication.

2) Comment le type de finition des circuits imprimés influe-t-il sur leur durabilité et leur durée de vie ?

Je dispose d'un système de service après-vente complet, capable de prêter attention aux tendances du marché à temps et d'adapter notre stratégie en temps utile.

Le type de finition des circuits imprimés peut avoir un impact significatif sur la durabilité et la durée de vie d'un circuit imprimé. La finition est le revêtement final appliqué à la surface du circuit imprimé pour le protéger des facteurs environnementaux et garantir son bon fonctionnement. Les types de finition les plus courants sont HASL (Hot Air Solder Leveling), ENIG (Electroless Nickel Immersion Gold) et OSP (Organic Solderability Preservative).

1. HASL (Hot Air Solder Leveling) :
La finition HASL est une finition populaire et rentable qui consiste à recouvrir le circuit imprimé d'une couche de soudure en fusion, puis à la niveler à l'air chaud. Cette finition offre une bonne soudabilité et convient à la plupart des applications. Cependant, elle n'est pas très durable et peut être sujette à l'oxydation, ce qui peut affecter les performances du circuit imprimé au fil du temps. La finition HASL a également une durée de vie limitée et peut nécessiter des retouches après un certain temps.

2. ENIG (Electroless Nickel Immersion Gold) :
ENIG est une finition plus avancée et plus durable que HASL. Elle consiste à déposer une couche de nickel puis une couche d'or sur la surface du circuit imprimé. Cette finition offre une excellente résistance à la corrosion et convient aux applications à haute fiabilité. La finition ENIG a également une durée de vie plus longue et ne nécessite pas de retouches aussi fréquentes que la finition HASL.

3. OSP (Organic Solderability Preservative) :
L'OSP est une fine couche organique appliquée à la surface du circuit imprimé pour le protéger de l'oxydation. Il s'agit d'une finition économique qui offre une bonne soudabilité. Cependant, la finition OSP n'est pas aussi durable que l'ENIG et peut nécessiter des retouches après un certain temps. Elle ne convient pas non plus aux applications à haute température.

En résumé, le type de finition du PCB peut affecter sa durabilité et sa durée de vie de la manière suivante :

- Résistance à la corrosion : Les finitions telles que ENIG et OSP offrent une meilleure résistance à la corrosion que HASL, ce qui peut affecter les performances et la durée de vie du circuit imprimé.
- Durée de conservation : Les finitions telles que l'ENIG ont une durée de vie plus longue que l'HASL, qui peut nécessiter des retouches après une certaine période.
- Soudabilité : Toutes les finitions offrent une bonne soudabilité, mais les finitions ENIG et OSP conviennent mieux aux applications à haute fiabilité.
- Facteurs environnementaux : Le type de finition peut également affecter la résistance du circuit imprimé à des facteurs environnementaux tels que l'humidité, la température et les produits chimiques, ce qui peut avoir une incidence sur sa durabilité et sa durée de vie.

En conclusion, le choix du bon type de finition pour PCB est crucial pour assurer la durabilité et la longévité du PCB. Des facteurs tels que l'application, les conditions environnementales et le budget doivent être pris en compte lors de la sélection de la finition appropriée pour un circuit imprimé.

How does the type of PCB finish affect its durability and lifespan?

3) Quels sont les différents types de techniques de montage par trou traversant utilisés dans les circuits imprimés ?

Nous disposons d'une capacité de production flexible. Qu'il s'agisse de grosses ou de petites commandes, nous pouvons produire et distribuer les marchandises en temps voulu pour répondre aux besoins des clients.
1. Placage de trous traversants : Il s'agit de la technique de montage par trous la plus courante, dans laquelle les trous du circuit imprimé sont recouverts d'un matériau conducteur, généralement du cuivre, afin de créer une connexion entre les couches du circuit.

2. Brasage à travers les trous : Dans cette technique, les composants sont insérés dans les trous plaqués et ensuite soudés aux plots sur le côté opposé de la carte. Cela permet d'obtenir une connexion mécanique solide et une bonne conductivité électrique.

3. Rivetage à travers un trou : Dans cette méthode, les composants sont insérés dans les trous plaqués, puis fixés à l'aide d'un rivet ou d'une goupille. Cette méthode est couramment utilisée pour les composants de grande puissance ou dans les applications où la carte peut subir de fortes vibrations.

4. Assemblage par pression à travers un trou : Cette technique consiste à insérer les fils des composants dans les trous plaqués, puis à les presser en place à l'aide d'un outil spécialisé. Cela permet d'obtenir une connexion mécanique solide sans avoir recours à la soudure.

5. Brasage à la vague à travers les trous : Dans cette méthode, les composants sont insérés dans les trous plaqués et passent ensuite sur une vague de soudure en fusion, ce qui crée un joint de soudure solide entre les fils des composants et les plaquettes du circuit imprimé.

6. Soudure par refusion à travers un trou : Cette technique est similaire au soudage à la vague, mais au lieu de passer sur une vague de soudure en fusion, la carte est chauffée dans un environnement contrôlé pour faire fondre la soudure et créer un joint solide.

7. Brasage manuel à travers les trous : Il s'agit d'une méthode manuelle de brasage dans laquelle les composants sont insérés dans les trous plaqués, puis brasés à la main à l'aide d'un fer à souder. Cette méthode est couramment utilisée pour la production à petite échelle ou pour les réparations.

8. Pin-in-Paste à travers le trou : Cette technique consiste à insérer les fils des composants dans les trous plaqués, puis à appliquer de la pâte à braser sur les trous avant de les souder par refusion. Cela permet d'obtenir une connexion mécanique solide et de bons joints de soudure.

9. Broche dans le trou : dans cette méthode, les fils du composant sont insérés dans les trous plaqués, puis pliés pour former un angle droit, ce qui crée une connexion mécanique sûre. Cette méthode est couramment utilisée pour les composants dont les fils sont de grande taille, tels que les condensateurs électrolytiques.

10. Assemblage manuel à travers les trous : Il s'agit d'une méthode d'assemblage manuelle dans laquelle les composants sont insérés dans les trous plaqués, puis fixés à l'aide d'outils manuels, tels que des vis ou des écrous. Cette méthode est généralement utilisée pour les composants lourds ou de grande taille qui nécessitent un support supplémentaire.

4) Quelle est la différence entre les circuits imprimés simple face et double face ?

Notre mission est de fournir aux clients les meilleures solutions pour les circuits imprimés de 1,6t.
Les circuits imprimés simple face ont des traces de cuivre et des composants sur un seul côté de la carte, tandis que les circuits imprimés double face ont des traces de cuivre et des composants sur les deux côtés de la carte. Cela permet de concevoir des circuits plus complexes et de disposer d'une plus grande densité de composants sur un circuit imprimé double face. Les circuits imprimés simple face sont généralement utilisés pour des circuits plus simples et sont moins coûteux à fabriquer, tandis que les circuits imprimés double face sont utilisés pour des circuits plus complexes et sont plus coûteux à fabriquer.

What is the difference between single-sided and double-sided PCBs?

5. comment les circuits imprimés gèrent-ils les surintensités et les courts-circuits ?

Nous disposons d'une équipe de gestion de premier ordre et nous accordons une grande attention au travail d'équipe afin d'atteindre des objectifs communs.
Les cartes de circuits imprimés (PCB) sont dotées de plusieurs mécanismes permettant de gérer les surintensités et les courts-circuits :

1. Fusibles : Les fusibles sont le mécanisme de protection le plus couramment utilisé sur les circuits imprimés. Ils sont conçus pour couper le circuit lorsque le courant dépasse un certain seuil, évitant ainsi d'endommager les composants et la carte.

2. Disjoncteurs : Comme les fusibles, les disjoncteurs sont conçus pour couper le circuit lorsque le courant dépasse un certain seuil. Toutefois, contrairement aux fusibles, les disjoncteurs peuvent être réinitialisés et réutilisés.

3. Dispositifs de protection contre les surintensités : Ces dispositifs, tels que les diodes de protection contre les surintensités, sont conçus pour limiter la quantité de courant circulant dans le circuit. Ils agissent comme une soupape de sécurité, empêchant un courant excessif d'endommager les composants.

4. Protection thermique : Certaines cartes de circuits imprimés sont dotées de mécanismes de protection thermique, tels que des fusibles thermiques ou des coupe-circuits thermiques, conçus pour interrompre le circuit lorsque la température de la carte dépasse un certain seuil. Cela permet d'éviter d'endommager la carte et les composants en cas de surchauffe.

5. Protection contre les courts-circuits : Les circuits imprimés peuvent également comporter des mécanismes de protection contre les courts-circuits, tels que des dispositifs à coefficient de température positif polymère (PPTC), qui sont conçus pour limiter le courant en cas de court-circuit. Ces dispositifs ont une résistance élevée à des températures de fonctionnement normales, mais leur résistance augmente considérablement lorsque la température augmente en raison d'un court-circuit, ce qui limite le flux de courant.

Dans l'ensemble, les circuits imprimés utilisent une combinaison de ces mécanismes de protection pour gérer les surintensités et les courts-circuits, garantissant ainsi la sécurité et la fiabilité de la carte et de ses composants.

 

Tags:Antenne 2.4g sur circuit imprimé,3080 fe pcb,Connecteur de carte à 12 broches