1.6t pcb

Seit über zwei Jahrzehnten widmet sich MTI der Bereitstellung umfassender OEM/ODM-Fertigungsdienstleistungen für Kunden in aller Welt. Dank unserer umfassenden Erfahrung in der Leiterplattenbestückung haben wir enge Kooperationsbeziehungen mit autorisierten Komponentenhändlern aufgebaut. So können wir alle benötigten Komponenten zu wettbewerbsfähigen Preisen beschaffen und unseren Kunden Kosteneffizienz garantieren.

Name des Produkts 1.6t pcb
Schlüsselwort printed circuit board assembly process,1 oz pcb copper thickness,2.4 ghz pcb antenna,prototype printed circuit board assembly,china printed circuit board assembly
Ort der Herkunft China
Dicke der Platte 1~3,2mm
Anwendbare Industrien neue Energie, usw.
Dienst OEM/ODM-Fertigung
Zertifikat ISO-9001:2015, ISO-14001:2015,ISO-13485:2012.UL/CSA
Farbe der Lötmaske Schwarz
Vorteil Wir sorgen für gute Qualität und wettbewerbsfähige Preise, damit unsere Kunden davon profitieren.
Verkaufsland All over the world for example:Barbados,Egypt,Mali,Venezuela,Hungary,Estonia,Puerto Rico,Fiji

 

Wir haben reiche Erfahrung mit der Erstellung eines Layouts mit einer Softwareplattform wie Altium Designer. Dieses Layout zeigt Ihnen das genaue Aussehen und die Platzierung der Komponenten auf Ihrer Platine.

Einer unserer Hardware-Design-Services ist die Kleinserienfertigung, die es Ihnen ermöglicht, Ihre Idee schnell zu testen und die Funktionalität des Hardware-Designs und der Leiterplatte zu überprüfen.

Ihre Arbeitsergebnisse liegen immer vor dem Zeitplan und sind von höchster Qualität.

FAQ-Leitfaden

Wie groß muss der Mindestabstand zwischen den Bauteilen auf einer Leiterplatte sein?

We have advanced production equipment and technology to meet the needs of customers, and can provide customers with high quality, low priced 1.6t pcb products.
Der erforderliche Mindestabstand zwischen den Bauteilen auf einer Leiterplatte hängt von verschiedenen Faktoren wie der Art der Bauteile, ihrer Größe und dem verwendeten Herstellungsverfahren ab. Im Allgemeinen wird der Mindestabstand zwischen den Bauteilen durch die Designregeln und Richtlinien des Herstellers bestimmt.

Bei oberflächenmontierten Bauteilen beträgt der Mindestabstand zwischen den Bauteilen normalerweise 0,2 mm bis 0,3 mm. Dieser Abstand ist notwendig, um sicherzustellen, dass die Lötpaste während des Reflow-Prozesses keine Brücken zwischen den Pads bildet.

Bei durchkontaktierten Bauteilen beträgt der Mindestabstand zwischen den Bauteilen in der Regel 1 mm bis 2 mm. Dieser Abstand ist notwendig, um sicherzustellen, dass sich die Bauteile während des Montageprozesses nicht gegenseitig stören.

Bei Hochgeschwindigkeits- und Hochfrequenzanwendungen muss der Mindestabstand zwischen den Komponenten möglicherweise vergrößert werden, um Signalstörungen und Übersprechen zu vermeiden. In diesen Fällen sollten die Konstruktionsregeln und Richtlinien des Herstellers genau befolgt werden.

Insgesamt sollte der Mindestabstand zwischen den Bauteilen auf einer Leiterplatte auf der Grundlage der spezifischen Anforderungen des Designs und der Möglichkeiten des Herstellungsprozesses festgelegt werden.

2. wie wirkt sich die Art der Leiterplattenbeschichtung auf die Haltbarkeit und Lebensdauer der Leiterplatten aus?

Ich verfüge über ein umfassendes Kundendienstsystem, mit dem wir Markttrends rechtzeitig erkennen und unsere Strategie rechtzeitig anpassen können.

Die Art der Leiterplattenbeschichtung kann einen erheblichen Einfluss auf die Haltbarkeit und Lebensdauer einer Leiterplatte haben. Das Finish ist die abschließende Beschichtung, die auf die Oberfläche der Leiterplatte aufgetragen wird, um sie vor Umwelteinflüssen zu schützen und ihre Funktionsfähigkeit zu gewährleisten. Einige gängige Arten von Leiterplattenoberflächen sind HASL (Hot Air Solder Leveling), ENIG (Electroless Nickel Immersion Gold) und OSP (Organic Solderability Preservative).

1. HASL (Hot Air Solder Leveling):
HASL ist ein beliebtes und kostengünstiges Verfahren, bei dem die Leiterplatte mit einer Schicht aus geschmolzenem Lot beschichtet und dann mit Heißluft geglättet wird. Diese Oberfläche bietet eine gute Lötbarkeit und eignet sich für die meisten Anwendungen. Sie ist jedoch nicht sehr haltbar und kann zu Oxidation neigen, was die Leistung der Leiterplatte mit der Zeit beeinträchtigen kann. Die HASL-Beschichtung ist außerdem nur begrenzt haltbar und muss möglicherweise nach einer gewissen Zeit nachgearbeitet werden.

2. ENIG (Chemisch Nickel Chemisch Gold):
ENIG ist im Vergleich zu HASL eine fortschrittlichere und haltbarere Oberfläche. Dabei wird eine Nickelschicht und anschließend eine Goldschicht auf die Oberfläche der Leiterplatte aufgebracht. Diese Oberfläche bietet eine hervorragende Korrosionsbeständigkeit und ist für Anwendungen mit hoher Zuverlässigkeit geeignet. Die ENIG-Oberfläche hat außerdem eine längere Haltbarkeit und muss nicht so häufig nachbearbeitet werden wie HASL.

3. OSP (Organic Solderability Preservative):
OSP ist eine dünne organische Beschichtung, die auf die Oberfläche der Leiterplatte aufgetragen wird, um sie vor Oxidation zu schützen. Es ist eine kostengünstige Beschichtung und bietet eine gute Lötbarkeit. Allerdings ist die OSP-Beschichtung nicht so haltbar wie ENIG und muss möglicherweise nach einer gewissen Zeit nachgearbeitet werden. Außerdem ist sie nicht für Hochtemperaturanwendungen geeignet.

Zusammenfassend lässt sich sagen, dass die Art der Leiterplattenbeschichtung die Haltbarkeit und Lebensdauer der Leiterplatten auf folgende Weise beeinflussen kann

- Korrosionsbeständigkeit: Oberflächen wie ENIG und OSP bieten im Vergleich zu HASL eine bessere Korrosionsbeständigkeit, was die Leistung und Lebensdauer der Leiterplatte beeinträchtigen kann.
- Haltbarkeitsdauer: Oberflächen wie ENIG haben eine längere Haltbarkeit als HASL, bei dem nach einer gewissen Zeit Nacharbeiten erforderlich sein können.
- Lötbarkeit: Alle Oberflächen sind gut lötbar, aber ENIG und OSP sind für Anwendungen mit hoher Zuverlässigkeit besser geeignet.
- Umweltfaktoren: Die Art der Beschichtung kann sich auch auf die Widerstandsfähigkeit der Leiterplatte gegenüber Umwelteinflüssen wie Feuchtigkeit, Temperatur und Chemikalien auswirken, was wiederum ihre Haltbarkeit und Lebensdauer beeinträchtigen kann.

Zusammenfassend lässt sich sagen, dass die Wahl der richtigen Art der Leiterplattenbeschichtung entscheidend für die Haltbarkeit und Langlebigkeit der Leiterplatte ist. Faktoren wie die Anwendung, die Umgebungsbedingungen und das Budget sollten bei der Auswahl der geeigneten Oberfläche für eine Leiterplatte berücksichtigt werden.

Welchen Einfluss hat die Art der Leiterplattenbeschichtung auf die Haltbarkeit und Lebensdauer der Leiterplatte?

3.What are the different types of through-hole mounting techniques used in PCBs?

Wir haben flexible Produktionskapazitäten. Egal, ob es sich um große oder kleine Aufträge handelt, Sie können die Waren rechtzeitig produzieren und freigeben, um die Bedürfnisse der Kunden zu erfüllen.
1. Durchkontaktierung: Dies ist die gebräuchlichste Technik der Durchsteckmontage, bei der die Löcher in der Leiterplatte mit einem leitfähigen Material, in der Regel Kupfer, beschichtet werden, um eine Verbindung zwischen den Schichten der Leiterplatte herzustellen.

2. Lötung durch Löcher: Bei dieser Technik werden die Bauteile in die plattierten Löcher eingesetzt und dann mit den Pads auf der gegenüberliegenden Seite der Leiterplatte verlötet. Dies sorgt für eine starke mechanische Verbindung und gute elektrische Leitfähigkeit.

3. Durchgangslochnieten: Bei dieser Methode werden die Bauteile in die plattierten Löcher eingesetzt und dann mit einem Niet oder Stift befestigt. Diese Methode wird in der Regel für Hochleistungskomponenten oder in Anwendungen verwendet, bei denen die Leiterplatte starken Vibrationen ausgesetzt sein kann.

4. Einpressen durch Löcher: Bei dieser Technik werden die Anschlussdrähte der Bauteile in die plattierten Löcher eingeführt und dann mit einem speziellen Werkzeug eingepresst. Dadurch entsteht eine starke mechanische Verbindung, ohne dass gelötet werden muss.

5. Wellenlöten durch Löcher: Bei diesem Verfahren werden die Bauteile in die plattierten Löcher eingesetzt und dann über eine Welle aus geschmolzenem Lot geführt, wodurch eine feste Lötverbindung zwischen den Bauteilanschlüssen und den Leiterplattenpads entsteht.

6. Reflow-Löten mit Durchgangslöchern: Diese Technik ähnelt dem Wellenlöten, aber anstatt über eine Welle geschmolzenen Lots zu fahren, wird die Leiterplatte in einer kontrollierten Umgebung erhitzt, um das Lot zu schmelzen und eine feste Verbindung herzustellen.

7. Handlöten mit Durchgangslöchern: Hierbei handelt es sich um eine manuelle Lötmethode, bei der die Bauteile in die plattierten Löcher eingesetzt und dann von Hand mit einem Lötkolben verlötet werden. Diese Methode wird üblicherweise für die Kleinserienfertigung oder für Reparaturen verwendet.

8. Pin-in-Paste durch die Bohrungen: Bei dieser Technik werden die Anschlussdrähte der Bauteile in die plattierten Löcher gesteckt und dann vor dem Reflow-Löten mit Lötpaste bestrichen. Dies sorgt für eine starke mechanische Verbindung und gute Lötstellen.

9. Through-Hole Pin-in-Hole: Bei dieser Methode werden die Anschlussdrähte der Komponenten in die plattierten Löcher gesteckt und dann zu einem rechten Winkel gebogen, wodurch eine sichere mechanische Verbindung entsteht. Diese Methode wird in der Regel für Bauteile mit großen Anschlüssen, wie z. B. Elektrolytkondensatoren, verwendet.

10. Handmontage mit Durchgangslöchern: Hierbei handelt es sich um eine manuelle Montagemethode, bei der die Bauteile in die plattierten Löcher eingeführt und dann mit Handwerkzeugen, wie Schrauben oder Muttern, befestigt werden. Diese Methode wird in der Regel für große oder schwere Bauteile verwendet, die zusätzliche Unterstützung benötigen.

4) Was ist der Unterschied zwischen einseitigen und doppelseitigen Leiterplatten?

Our mission is to provide customers with the best solutions for 1.6t pcb.
Bei einseitigen Leiterplatten befinden sich die Kupferbahnen und Bauteile nur auf einer Seite der Leiterplatte, während bei doppelseitigen Leiterplatten die Kupferbahnen und Bauteile auf beiden Seiten der Leiterplatte liegen. Dies ermöglicht komplexere Schaltungsentwürfe und eine höhere Dichte von Bauteilen auf einer doppelseitigen Leiterplatte. Einseitige Leiterplatten werden in der Regel für einfachere Schaltungen verwendet und sind in der Herstellung kostengünstiger, während doppelseitige Leiterplatten für komplexere Schaltungen verwendet werden und in der Herstellung teurer sind.

Was ist der Unterschied zwischen einseitigen und doppelseitigen Leiterplatten?

5. wie gehen Leiterplatten mit Überstrom und Kurzschluss um?

Wir haben ein erstklassiges Managementteam und legen Wert auf Teamarbeit, um gemeinsame Ziele zu erreichen.
PCBs (Printed Circuit Boards) verfügen über mehrere Mechanismen zur Bewältigung von Überstrom und Kurzschlüssen:

1. Sicherungen: Sicherungen sind der am häufigsten verwendete Schutzmechanismus auf Leiterplatten. Sie sind so konzipiert, dass sie den Stromkreis unterbrechen, wenn der Strom einen bestimmten Schwellenwert überschreitet, und so Schäden an den Bauteilen und der Leiterplatte verhindern.

2. Stromkreisunterbrecher: Ähnlich wie Sicherungen sind Leistungsschalter so konzipiert, dass sie den Stromkreis unterbrechen, wenn der Strom einen bestimmten Schwellenwert überschreitet. Im Gegensatz zu Sicherungen können Leistungsschalter jedoch zurückgesetzt und wiederverwendet werden.

3. Überstromschutzeinrichtungen: Diese Vorrichtungen, wie z. B. Überstromschutzdioden, sind so konzipiert, dass sie die durch den Stromkreis fließende Strommenge begrenzen. Sie wirken wie ein Sicherheitsventil und verhindern, dass ein zu hoher Strom die Komponenten beschädigt.

4. Thermischer Schutz: Einige Leiterplatten verfügen über thermische Schutzmechanismen, wie z. B. thermische Sicherungen oder thermische Abschaltungen, die den Stromkreis unterbrechen, wenn die Temperatur der Leiterplatte einen bestimmten Schwellenwert überschreitet. Auf diese Weise können Schäden an der Leiterplatte und den Bauteilen durch Überhitzung vermieden werden.

5. Kurzschlussschutz: Leiterplatten können auch über Kurzschlussschutzmechanismen verfügen, wie z. B. polymere Bauteile mit positivem Temperaturkoeffizienten (PPTC), die den Strom im Falle eines Kurzschlusses begrenzen sollen. Diese Vorrichtungen haben bei normalen Betriebstemperaturen einen hohen Widerstand, der sich jedoch bei einem Kurzschluss deutlich erhöht, wodurch der Stromfluss begrenzt wird.

Insgesamt verwenden Leiterplatten eine Kombination dieser Schutzmechanismen zur Bewältigung von Überstrom und Kurzschlüssen, um die Sicherheit und Zuverlässigkeit der Leiterplatte und ihrer Komponenten zu gewährleisten.

 

Tags:2.4g pcb antenna,3080 fe Platine,12 pin pcb connector