1.27 mm pcb

Seit über zwei Jahrzehnten widmet sich MTI der Bereitstellung umfassender OEM/ODM-Fertigungsdienstleistungen für Kunden in aller Welt. Dank unserer umfassenden Erfahrung in der Leiterplattenbestückung haben wir enge Kooperationsbeziehungen mit autorisierten Komponentenhändlern aufgebaut. So können wir alle benötigten Komponenten zu wettbewerbsfähigen Preisen beschaffen und unseren Kunden Kosteneffizienz garantieren.

Name des Produkts 1.27 mm pcb
Schlüsselwort 100 watt amplifier pcb,12 layer pcb thickness
Ort der Herkunft China
Dicke der Platte 1~3,2mm
Anwendbare Industrien medizinisch, usw.
Dienst OEM/ODM-Fertigung
Zertifikat ISO-9001:2015, ISO-14001:2015,ISO-13485:2012.UL/CSA
Farbe der Lötmaske Rot
Vorteil Wir sorgen für gute Qualität und wettbewerbsfähige Preise, damit unsere Kunden davon profitieren.
Verkaufsland All over the world for example:Seychelles,Spratly Islands,Peru,Fiji,Montserrat,Thailand,Mongolia,Costa Rica,Cuba

 

Einer unserer Hardware-Design-Services ist die Kleinserienfertigung, die es Ihnen ermöglicht, Ihre Idee schnell zu testen und die Funktionalität des Hardware-Designs und der Leiterplatte zu überprüfen.

Wir haben reiche Erfahrung mit der Erstellung eines Layouts mit einer Softwareplattform wie Altium Designer. Dieses Layout zeigt Ihnen das genaue Aussehen und die Platzierung der Komponenten auf Ihrer Platine.

Ihre Arbeitsergebnisse liegen immer vor dem Zeitplan und sind von höchster Qualität.

FAQ-Leitfaden

1. kann eine Leiterplatte verschiedene Flexibilitätsstufen haben?

We have a wide range of 1.27 mm pcb customer groups and establishes long -term cooperative relationships with partners.
Ja, eine gedruckte Schaltung (PCB) kann je nach Design und verwendeten Materialien unterschiedlich flexibel sein. Einige Leiterplatten sind starr und können sich überhaupt nicht biegen oder biegen, während andere so konstruiert sind, dass sie flexibel sind und sich bis zu einem gewissen Grad biegen oder verdrehen können. Es gibt auch Leiterplatten, die eine Kombination aus starren und flexiblen Bereichen aufweisen, die so genannten starr-flexiblen Leiterplatten. Der Grad der Flexibilität einer Leiterplatte wird durch Faktoren wie die Art des Trägermaterials, die Dicke und Anzahl der Lagen und die Art des Schaltungsdesigns bestimmt.

2. was ist Wärmemanagement in Leiterplatten und warum ist es wichtig?

Wir haben hart daran gearbeitet, die Servicequalität zu verbessern und die Bedürfnisse unserer Kunden zu erfüllen.
Unter Wärmemanagement in Leiterplatten (Printed Circuit Boards, PCBs) versteht man die Techniken und Strategien zur Kontrolle und Ableitung der von den elektronischen Komponenten auf der Leiterplatte erzeugten Wärme. Dies ist wichtig, da übermäßige Wärme die Komponenten beschädigen, ihre Leistung verringern und sogar zum Ausfall der Leiterplatte führen kann. Ein angemessenes Wärmemanagement ist entscheidend für die Zuverlässigkeit und Langlebigkeit elektronischer Geräte.

The electronic components on a 1.27 mm pcb generate heat due to the flow of electricity through them. This heat can build up and cause the temperature of the PCB to rise, potentially leading to malfunctions or failures. Thermal management techniques are used to dissipate this heat and maintain the temperature of the PCB within safe operating limits.

Es gibt verschiedene Methoden des Wärmemanagements in Leiterplatten, darunter Kühlkörper, Wärmeleitbleche und Wärmeleitpads. Kühlkörper sind Metallkomponenten, die an heißen Bauteilen auf der Leiterplatte befestigt werden, um Wärme aufzunehmen und abzuleiten. Thermische Durchkontaktierungen sind kleine Löcher, die in die Leiterplatte gebohrt werden, damit die Wärme auf die andere Seite der Leiterplatte entweichen kann. Wärmeleitpads werden verwendet, um die Wärme von den Komponenten auf die Leiterplatte und dann an die Umgebungsluft zu übertragen.

Ein angemessenes Wärmemanagement ist vor allem bei Leiterplatten mit hoher Leistung und hoher Dichte wichtig, bei denen die Wärmeentwicklung stärker ausgeprägt ist. Es ist auch entscheidend für Anwendungen, bei denen die Leiterplatte extremen Temperaturen oder rauen Umgebungen ausgesetzt ist. Ohne ein wirksames Wärmemanagement können die Leistung und Zuverlässigkeit elektronischer Geräte beeinträchtigt werden, was zu kostspieligen Reparaturen oder Ersatzgeräten führt.

3 Wie wirkt sich die Art der Durchkontaktierung auf die Leistung einer Leiterplatte aus?

Being one of the top 1.27 mm pcb manufacturers in China, We attach great importance to this detail.
Die Art der verwendeten Durchkontaktierungen kann die Leistung einer Leiterplatte in mehrfacher Hinsicht beeinflussen:

1. Signalintegrität: Durchkontaktierungen können als Diskontinuitäten im Signalpfad wirken und Reflexionen und Signalverschlechterungen verursachen. Die Art der Durchkontaktierung kann sich auf die Impedanz und die Signalintegrität der Leiterplatte auswirken. Für Hochgeschwindigkeitssignale ist es wichtig, Durchkontaktierungen mit kontrollierter Impedanz zu verwenden, um die Signalintegrität zu erhalten.

2. Elektrische Leistung: Auch die Art der Durchkontaktierung kann sich auf die elektrische Leistung der Leiterplatte auswirken. Durchkontaktierungen haben beispielsweise einen geringeren Widerstand und eine geringere Induktivität als Blind- oder vergrabene Durchkontaktierungen, was sich auf die Strom- und Signalübertragung auf der Leiterplatte auswirken kann.

3. Thermische Leistung: Durchkontaktierungen können ebenfalls eine Rolle für die thermische Leistung einer Leiterplatte spielen. Durchkontaktierungen können als thermische Durchgänge fungieren, die es ermöglichen, Wärme von einer Schicht zur anderen abzuleiten. Blind- und vergrabene Durchkontaktierungen hingegen können Wärme einschließen und das gesamte Wärmemanagement der Leiterplatte beeinträchtigen.

4. Herstellungskosten: Die Art der Durchkontaktierung kann sich auch auf die Herstellungskosten der Leiterplatte auswirken. Blind- und vergrabene Durchkontaktierungen erfordern komplexere und teurere Verfahren, während Durchkontaktierungen relativ einfach und billiger herzustellen sind.

5. Größe und Dichte der Leiterplatte: Die Art der Durchkontaktierung kann sich auch auf die Größe und Dichte der Leiterplatte auswirken. Blind- und vergrabene Durchkontaktierungen nehmen weniger Platz auf der Oberfläche der Leiterplatte ein und ermöglichen Designs mit höherer Dichte. Dies kann für kleinere und kompaktere Leiterplatten von Vorteil sein.

Insgesamt kann die Art der verwendeten Durchkontaktierungen einen erheblichen Einfluss auf die Leistung, die Kosten und das Design einer Leiterplatte haben. Es ist wichtig, sorgfältig zu überlegen, welche Art von Durchkontaktierungen für eine bestimmte Anwendung benötigt wird, um eine optimale Leistung und Funktionalität der Leiterplatte zu gewährleisten.

4.How important is the trace width and spacing in a PCB design?

Our 1.27 mm pcb products have competitive and differentiated advantages, and actively promote digital transformation and innovation.
Die Leiterbahnbreite und -abstände in einem Leiterplattendesign sind entscheidende Faktoren, die die Leistung und Zuverlässigkeit der Schaltung stark beeinflussen können. Hier sind einige Gründe dafür:

1. Strombelastbarkeit: Die Leiterbahnbreite bestimmt die Strommenge, die durch die Leiterbahn fließen kann, ohne eine übermäßige Erwärmung zu verursachen. Eine zu geringe Leiterbahnbreite kann zu Überhitzung und Beschädigung der Schaltung führen.

2. Spannungsabfall: Die Leiterbahnbreite wirkt sich auch auf den Spannungsabfall über der Leiterbahn aus. Eine schmale Leiterbahn hat einen höheren Widerstand, was zu einem höheren Spannungsabfall führt. Dies kann zu einem Absinken des Spannungspegels am Ende der Leiterbahn führen und die Leistung der Schaltung beeinträchtigen.

3. Signalintegrität: Der Abstand zwischen den Leiterbahnen ist entscheidend für die Wahrung der Signalintegrität. Ist der Abstand zu gering, kann es zu Übersprechen und Interferenzen zwischen den Signalen kommen, was zu Fehlern und Störungen in der Schaltung führt.

4. Wärmemanagement: Der Abstand zwischen den Leiterbahnen spielt ebenfalls eine Rolle beim Wärmemanagement. Ein angemessener Abstand zwischen den Leiterbahnen ermöglicht eine bessere Luftzirkulation, wodurch die Wärme aus der Schaltung abgeleitet werden kann. Dies ist besonders wichtig für Schaltungen mit hohem Stromverbrauch.

5. Einschränkungen bei der Herstellung: Auch die Breite und der Abstand der Leiterbahnen müssen im Herstellungsprozess berücksichtigt werden. Wenn die Leiterbahnen zu dicht beieinander liegen, kann es schwierig sein, die Leiterplatte zu ätzen und zu prüfen, was zu Herstellungsfehlern führt.

Zusammenfassend lässt sich sagen, dass die Leiterbahnbreite und -abstände kritische Parameter sind, die bei der Entwicklung von Leiterplatten sorgfältig berücksichtigt werden müssen, um die ordnungsgemäße Funktion und Zuverlässigkeit der Schaltung zu gewährleisten.

Ist es möglich, auf jeder Seite einer Leiterplatte unterschiedliche Bauteile zu haben?

Wir setzen auf Innovation und kontinuierliche Verbesserung, um einen Wettbewerbsvorteil zu erhalten.
Yes, it is possible to have different components on each side of a PCB. This is known as a double-sided PCB or a two-layer PCB. The components on each side can be connected through vias, which are small holes drilled through the 1.27 mm pcb that allow for electrical connections between the layers. This allows for more compact and complex circuit designs. However, it also adds complexity to the manufacturing process and may increase the cost of the PCB.

Is it possible to have different components on each side of a PCB?

6.How does the type of surface finish on a PCB affect its performance?

1.27 mm pcb is not a product only, but also can help you comes to money-making.
Die Art der Oberflächenbeschaffenheit einer Leiterplatte kann ihre Leistung in mehrfacher Hinsicht beeinflussen:

1. Elektrische Leistung: Die Oberflächenbeschaffenheit kann sich auf die elektrischen Eigenschaften der Leiterplatte auswirken, z. B. auf Impedanz, Signalintegrität und Widerstand. Eine glatte und gleichmäßige Oberflächenbeschaffenheit kann dazu beitragen, gleichbleibende elektrische Eigenschaften zu erhalten, während eine raue oder ungleichmäßige Oberfläche Signalverluste und Störungen verursachen kann.

2. Lötbarkeit: Die Oberflächenbeschaffenheit spielt eine entscheidende Rolle für die Lötbarkeit der Leiterplatte. Eine gute Oberflächenbeschaffenheit sollte eine ebene und gleichmäßige Oberfläche für die zu lötenden Bauteile bieten. Eine schlechte Oberflächenbeschaffenheit kann zu Lötfehlern wie Brückenbildung, Lücken und schlechter Benetzung führen, was die Zuverlässigkeit der Leiterplatte beeinträchtigen kann.

3. Korrosionsbeständigkeit: Die Oberflächenbeschaffenheit kann auch die Korrosionsbeständigkeit der Leiterplatte beeinflussen. Eine hochwertige Oberflächenbeschichtung kann die Kupferbahnen vor Oxidation und anderen Umwelteinflüssen schützen und so die langfristige Zuverlässigkeit der Leiterplatte gewährleisten.

4. Montageverfahren: Unterschiedliche Oberflächenbeschaffenheiten können unterschiedliche Montageverfahren erfordern, z. B. die Art des verwendeten Lots oder die für das Reflow-Verfahren erforderliche Temperatur und Zeit. Dies kann sich auf die Gesamteffizienz und die Kosten des PCB-Bestückungsprozesses auswirken.

5. Kosten: Die Art der Oberflächenbehandlung kann sich auch auf die Kosten der Leiterplatte auswirken. Einige Oberflächenbehandlungen, wie z. B. die Vergoldung, sind teurer als andere, wie z. B. HASL (Hot Air Solder Leveling). Die Wahl der richtigen Oberflächenbeschichtung kann dazu beitragen, die Kosten- und Leistungsanforderungen an die Leiterplatte in Einklang zu bringen.

Insgesamt kann die Oberflächenbeschaffenheit einer Leiterplatte deren Leistung, Zuverlässigkeit und Kosten erheblich beeinflussen. Es ist wichtig, die Anforderungen sorgfältig zu prüfen und die für die jeweilige Anwendung am besten geeignete Oberflächenbeschaffenheit zu wählen.

7.What are the different types of through-hole mounting techniques used in PCBs?

Wir haben flexible Produktionskapazitäten. Egal, ob es sich um große oder kleine Aufträge handelt, Sie können die Waren rechtzeitig produzieren und freigeben, um die Bedürfnisse der Kunden zu erfüllen.
1. Durchkontaktierung: Dies ist die gebräuchlichste Technik der Durchsteckmontage, bei der die Löcher in der Leiterplatte mit einem leitfähigen Material, in der Regel Kupfer, beschichtet werden, um eine Verbindung zwischen den Schichten der Leiterplatte herzustellen.

2. Lötung durch Löcher: Bei dieser Technik werden die Bauteile in die plattierten Löcher eingesetzt und dann mit den Pads auf der gegenüberliegenden Seite der Leiterplatte verlötet. Dies sorgt für eine starke mechanische Verbindung und gute elektrische Leitfähigkeit.

3. Durchgangslochnieten: Bei dieser Methode werden die Bauteile in die plattierten Löcher eingesetzt und dann mit einem Niet oder Stift befestigt. Diese Methode wird in der Regel für Hochleistungskomponenten oder in Anwendungen verwendet, bei denen die Leiterplatte starken Vibrationen ausgesetzt sein kann.

4. Einpressen durch Löcher: Bei dieser Technik werden die Anschlussdrähte der Bauteile in die plattierten Löcher eingeführt und dann mit einem speziellen Werkzeug eingepresst. Dadurch entsteht eine starke mechanische Verbindung, ohne dass gelötet werden muss.

5. Wellenlöten durch Löcher: Bei diesem Verfahren werden die Bauteile in die plattierten Löcher eingesetzt und dann über eine Welle aus geschmolzenem Lot geführt, wodurch eine feste Lötverbindung zwischen den Bauteilanschlüssen und den Leiterplattenpads entsteht.

6. Reflow-Löten mit Durchgangslöchern: Diese Technik ähnelt dem Wellenlöten, aber anstatt über eine Welle geschmolzenen Lots zu fahren, wird die Leiterplatte in einer kontrollierten Umgebung erhitzt, um das Lot zu schmelzen und eine feste Verbindung herzustellen.

7. Handlöten mit Durchgangslöchern: Hierbei handelt es sich um eine manuelle Lötmethode, bei der die Bauteile in die plattierten Löcher eingesetzt und dann von Hand mit einem Lötkolben verlötet werden. Diese Methode wird üblicherweise für die Kleinserienfertigung oder für Reparaturen verwendet.

8. Pin-in-Paste durch die Bohrungen: Bei dieser Technik werden die Anschlussdrähte der Bauteile in die plattierten Löcher gesteckt und dann vor dem Reflow-Löten mit Lötpaste bestrichen. Dies sorgt für eine starke mechanische Verbindung und gute Lötstellen.

9. Through-Hole Pin-in-Hole: Bei dieser Methode werden die Anschlussdrähte der Komponenten in die plattierten Löcher gesteckt und dann zu einem rechten Winkel gebogen, wodurch eine sichere mechanische Verbindung entsteht. Diese Methode wird in der Regel für Bauteile mit großen Anschlüssen, wie z. B. Elektrolytkondensatoren, verwendet.

10. Handmontage mit Durchgangslöchern: Hierbei handelt es sich um eine manuelle Montagemethode, bei der die Bauteile in die plattierten Löcher eingeführt und dann mit Handwerkzeugen, wie Schrauben oder Muttern, befestigt werden. Diese Methode wird in der Regel für große oder schwere Bauteile verwendet, die zusätzliche Unterstützung benötigen.

8.What are the factors to consider when choosing the right PCB material for a specific application?

We are centered on customers and always pay attention to customers’ needs for 1.27 mm pcb products.
1. Elektrische Eigenschaften: Die elektrischen Eigenschaften des Leiterplattenmaterials, wie z. B. Dielektrizitätskonstante, Verlusttangente und Isolationswiderstand, sollten sorgfältig geprüft werden, um eine optimale Leistung für die jeweilige Anwendung zu gewährleisten.

2. Thermische Eigenschaften: Die Wärmeleitfähigkeit und der Wärmeausdehnungskoeffizient des Leiterplattenmaterials sind wichtige Faktoren, die zu berücksichtigen sind, insbesondere bei Anwendungen, die eine hohe Leistung erfordern oder unter extremen Temperaturen arbeiten.

3. Mechanische Eigenschaften: Die mechanische Festigkeit, Steifigkeit und Flexibilität des Leiterplattenmaterials sollte bewertet werden, um sicherzustellen, dass es den physikalischen Belastungen und Beanspruchungen der Anwendung standhalten kann.

4. Chemische Beständigkeit: Das PCB-Material sollte gegen alle Chemikalien oder Lösungsmittel beständig sein, mit denen es während seiner Verwendung in Kontakt kommen kann.

5. Kosten: Die Kosten des Leiterplattenmaterials sollten berücksichtigt werden, da sie je nach Art und Qualität des Materials erheblich variieren können.

6. Verfügbarkeit: Einige PCB-Materialien sind möglicherweise leichter verfügbar als andere, was sich auf die Produktionszeiten und -kosten auswirken kann.

7. Herstellungsprozess: Das gewählte Leiterplattenmaterial sollte mit dem Herstellungsprozess, wie Ätzen, Bohren und Beschichten, kompatibel sein, um eine effiziente und zuverlässige Produktion zu gewährleisten.

8. Umweltfaktoren: Bei der Auswahl eines Leiterplattenmaterials sollten die Umgebungsbedingungen, wie Feuchtigkeit, Nässe und UV-Licht, berücksichtigt werden, um sicherzustellen, dass es diesen Bedingungen standhält.

9. Signalintegrität: Bei Hochfrequenzanwendungen sollte das Leiterplattenmaterial einen geringen Signalverlust und eine gute Signalintegrität aufweisen, um Störungen zu vermeiden und eine genaue Signalübertragung zu gewährleisten.

10. RoHS-Konformität: Wenn die Anwendung die Einhaltung von Umweltvorschriften wie der RoHS-Richtlinie (Restriction of Hazardous Substances) erfordert, sollte das Leiterplattenmaterial entsprechend ausgewählt werden.

 

Tags:gh60 pcb,12 Lagen Leiterplattendicke