12 layer pcb stackup

MTI é um fabricante de placas de circuito impresso (PCB) de alta precisão, especializado no fabrico de placas de circuito impresso de dupla face e multicamadas de alta precisão, fornecendo produtos de alta qualidade e um serviço mais rápido para empresas de alta tecnologia.

Temos um grupo de pessoal experiente e uma equipa de gestão de alta qualidade, estabelecemos um sistema completo de garantia de qualidade. Os produtos incluem FR-4 PCB, PCB de metal e RFPCB (PCB de cerâmica, PCB de PTFE), etc. Temos uma vasta experiência na produção de PCB de cobre espesso, PCB RF, PCB de alta Tg, PCB HDI. Com certificações ISO9001, ISO14001, TS16949, ISO 13485, RoHS.

Nome do produto 12 layer pcb stackup
Palavra-chave h60 pcb,12v pcb
Local de origem China
Espessura da placa 1~3,2mm
Sectores aplicáveis medical, etc.
Serviço Fabrico OEM/ODM
Certificado ISO-9001:2015, ISO-14001:2015,ISO-13485:2012.UL/CSA
Cor da máscara de solda Preto
Vantagem Mantemos a boa qualidade e o preço competitivo para garantir o benefício dos nossos clientes
País de vendas All over the world for example:Denmark,Isle of Man,Jamaica,Wallis and Futuna,Cocos (Keeling) Islands,Kyrgyzstan,Venezuela,Guatemala

 

Um dos nossos serviços de conceção de hardware é o fabrico de pequenos lotes, que lhe permite testar rapidamente a sua ideia e verificar a funcionalidade da conceção de hardware e da placa PCB.

Os seus produtos são sempre entregues antes do prazo e com a melhor qualidade.

Temos uma vasta experiência em engenharia para criar um esquema utilizando uma plataforma de software como o Altium Designer. Este layout mostra-lhe o aspeto exato e a colocação dos componentes na sua placa.

Guia de FAQs

1.Can PCBs be designed to withstand high vibration or shock?

Estabelecemos parcerias estáveis e de longo prazo com os nossos fornecedores, pelo que temos grandes vantagens em termos de preço, custo e garantia de qualidade.
Sim, as PCB podem ser concebidas para resistir a vibrações ou choques elevados, incorporando determinadas características de conceção e utilizando materiais adequados. Algumas formas de tornar uma PCB mais resistente a vibrações e choques incluem:

1. Utilização de um material de substrato de PCB mais espesso e mais rígido, como FR-4 ou cerâmica, para proporcionar um melhor suporte estrutural e reduzir a flexão.

2. Acrescentar estruturas de suporte adicionais, tais como orifícios de montagem ou reforços, para fixar a PCB ao chassis ou à caixa.

3. Utilização de componentes mais pequenos e compactos para reduzir o peso e a dimensão globais da placa de circuito impresso, o que pode ajudar a minimizar os efeitos da vibração.

4. Utilizar materiais de absorção de choques, como borracha ou espuma, entre a placa de circuito impresso e a superfície de montagem para absorver e amortecer as vibrações.

5. Conceber a disposição da placa de circuito impresso para minimizar o comprimento e o número de traços e vias, o que pode reduzir o risco de tensões mecânicas e falhas.

6. Utilização de componentes com tecnologia de montagem em superfície (SMT) em vez de componentes com orifícios passantes, uma vez que são menos susceptíveis de serem danificados por vibrações.

7. Incorporação de um revestimento isolante ou de materiais de encapsulamento para proteger a placa de circuito impresso e os componentes da humidade e das tensões mecânicas.

É importante ter em conta os requisitos específicos e o ambiente em que a placa de circuito impresso será utilizada aquando da conceção para uma elevada resistência a vibrações ou choques. A consulta de um especialista em conceção de PCB também pode ajudar a garantir que a PCB é corretamente concebida para resistir a estas condições.

2.Qual a importância da largura e do espaçamento dos traços num projeto de PCB?

Our 12 layer pcb stackup products have competitive and differentiated advantages, and actively promote digital transformation and innovation.
A largura e o espaçamento dos traços num desenho de PCB são factores cruciais que podem afetar grandemente o desempenho e a fiabilidade do circuito. Eis algumas razões para tal:

1. Capacidade de transporte de corrente: A largura do traço determina a quantidade de corrente que pode fluir através do traço sem causar aquecimento excessivo. Se a largura do traço for demasiado estreita, pode provocar um sobreaquecimento e danificar o circuito.

2. Queda de tensão: A largura do traço também afecta a queda de tensão através do traço. Um traço estreito terá uma resistência mais elevada, resultando numa maior queda de tensão. Isto pode causar uma diminuição do nível de tensão no final do traço, afectando o desempenho do circuito.

3. Integridade do sinal: O espaçamento entre traços é fundamental para manter a integridade do sinal. Se o espaçamento for demasiado estreito, pode dar origem a diafonia e interferência entre sinais, resultando em erros e mau funcionamento do circuito.

4. Gestão térmica: O espaçamento entre traços também desempenha um papel na gestão térmica. Um espaçamento adequado entre traços permite uma melhor circulação de ar, o que ajuda a dissipar o calor do circuito. Isto é especialmente importante para circuitos de alta potência.

5. Restrições de fabrico: A largura e o espaçamento dos traços também têm de ser considerados no processo de fabrico. Se os traços estiverem demasiado próximos uns dos outros, pode ser difícil gravar e inspecionar a placa de circuito impresso, o que pode dar origem a defeitos de fabrico.

Em resumo, a largura e o espaçamento dos traços são parâmetros críticos que devem ser cuidadosamente considerados na conceção da placa de circuito impresso para garantir o bom funcionamento e a fiabilidade do circuito.

How important is the trace width and spacing in a 12 layer pcb stackup design?

3.What is thermal management in PCBs and why is it important?

Temos trabalhado arduamente para melhorar a qualidade do serviço e satisfazer as necessidades dos clientes.
A gestão térmica em PCB (placas de circuitos impressos) refere-se às técnicas e estratégias utilizadas para controlar e dissipar o calor gerado pelos componentes electrónicos na placa. É importante porque o calor excessivo pode danificar os componentes, reduzir o seu desempenho e até provocar a falha da placa de circuito impresso. A gestão térmica adequada é crucial para garantir a fiabilidade e a longevidade dos dispositivos electrónicos.

Os componentes electrónicos de uma placa de circuito impresso geram calor devido ao fluxo de eletricidade que os atravessa. Este calor pode acumular-se e provocar o aumento da temperatura da placa de circuito impresso, conduzindo potencialmente a avarias ou falhas. As técnicas de gestão térmica são utilizadas para dissipar este calor e manter a temperatura da placa de circuito impresso dentro de limites de funcionamento seguros.

Existem vários métodos de gestão térmica em PCBs, incluindo dissipadores de calor, vias térmicas e almofadas térmicas. Os dissipadores de calor são componentes metálicos ligados a componentes quentes na PCB para absorver e dissipar o calor. As vias térmicas são pequenos orifícios perfurados na placa de circuito impresso para permitir a saída de calor para o outro lado da placa. As almofadas térmicas são utilizadas para transferir o calor dos componentes para a placa de circuito impresso e depois para o ar circundante.

Uma gestão térmica adequada é especialmente importante em PCB de alta potência e alta densidade, onde a geração de calor é mais significativa. É também crucial em aplicações em que a placa de circuito impresso está exposta a temperaturas extremas ou a ambientes agressivos. Sem uma gestão térmica eficaz, o desempenho e a fiabilidade dos dispositivos electrónicos podem ser comprometidos, levando a reparações ou substituições dispendiosas.

4.What is testability in PCB design and how is it achieved?

Our 12 layer pcb stackup products undergo strict quality control to ensure customer satisfaction.
Testability in PCB design refers to the ease and accuracy with which a printed circuit board (PCB) can be tested for functionality and performance. It is an important aspect of PCB design as it ensures that any defects or issues with the board can be identified and addressed before it is put into use.

Achieving testability in PCB design involves implementing certain design features and techniques that make it easier to test the board. These include:

1. Design for Test (DFT): This involves designing the PCB with specific test points and access points that allow for easy and accurate testing of different components and circuits.

2. Test Points: These are designated points on the PCB where test probes can be connected to measure voltage, current, and other parameters. Test points should be strategically placed to provide access to critical components and circuits.

3. Test Pads: These are small copper pads on the PCB that are used for attaching test probes. They should be placed close to the corresponding component or circuit for accurate testing.

4. Test Jigs: These are specialized tools used for testing PCBs. They can be custom-made for a specific PCB design and can greatly improve the accuracy and efficiency of testing.

5. Design for Manufacturability (DFM): This involves designing the PCB with manufacturing and testing in mind. This includes using standard components, avoiding complex layouts, and minimizing the number of layers to make testing easier.

6. Design for Debug (DFD): This involves designing the PCB with features that make it easier to identify and troubleshoot any issues that may arise during testing.

Overall, achieving testability in PCB design requires careful planning and consideration of the testing process. By implementing DFT, using test points and pads, and designing for manufacturability and debug, designers can ensure that their PCBs are easily testable and can be quickly and accurately diagnosed for any potential issues.

What is testability in 12 layer pcb stackup design and how is it achieved?

5.What materials are commonly used to make PCBs?

Temos vantagens em termos de marketing e expansão de canais. Os fornecedores estabeleceram boas relações de cooperação, melhoraram continuamente os fluxos de trabalho, melhoraram a eficiência e a produtividade e forneceram aos clientes produtos e serviços de alta qualidade.
1. Cobre: O cobre é o material mais comummente utilizado nas placas de circuito impresso. É utilizado como camada condutora para os traços e almofadas dos circuitos.

2. FR4: O FR4 é um tipo de laminado epoxídico reforçado com fibra de vidro que é utilizado como material de base para a maioria dos PCB. Proporciona uma boa resistência mecânica e propriedades de isolamento.

3. Máscara de solda: A máscara de solda é uma camada de polímero que é aplicada sobre os traços de cobre para os proteger da oxidação e para evitar pontes de solda durante a montagem.

4. Serigrafia: A serigrafia é uma camada de tinta que é impressa sobre a máscara de soldadura para fornecer etiquetas de componentes, designadores de referência e outras informações.

5. Solda de estanho/chumbo ou sem chumbo: A solda é utilizada para fixar os componentes à placa de circuito impresso e para criar ligações eléctricas entre eles.

6. Ouro: O ouro é utilizado para revestir as placas de contacto e as vias da placa de circuito impresso, uma vez que proporciona boa condutividade e resistência à corrosão.

7. Prata: A prata é por vezes utilizada como alternativa ao ouro para revestir as placas de contacto e as vias, uma vez que é mais barata, mas continua a proporcionar uma boa condutividade.

8. Níquel: O níquel é utilizado como camada de barreira entre o cobre e o revestimento de ouro ou prata para evitar que se difundam um no outro.

9. Resina epoxídica: A resina epoxídica é utilizada como adesivo para unir as camadas da placa de circuito impresso.

10. Cerâmica: Os materiais cerâmicos são utilizados em placas de circuito impresso especializadas que requerem elevada condutividade térmica e propriedades de isolamento, como em aplicações de alta potência.

6.Can PCBs be customized based on specific design requirements?

Possuímos uma vasta experiência no sector e conhecimentos profissionais, e temos uma forte competitividade no mercado.
Sim, as PCB (placas de circuito impresso) podem ser personalizadas com base em requisitos de design específicos. Normalmente, isto é feito através da utilização de software de desenho assistido por computador (CAD), que permite a criação de um esquema e desenho personalizados para a PCB. O design pode ser adaptado para atender a requisitos específicos de tamanho, forma e funcionalidade, bem como incorporar componentes e recursos específicos. O processo de personalização pode também envolver a seleção dos materiais e técnicas de fabrico adequados para garantir que a placa de circuito impresso cumpre as especificações desejadas.

Can 12 layer pcb stackup be customized based on specific design requirements?

7.How does the hole size and shape impact the manufacturing process of a PCB?

Continuamos a investir em investigação e desenvolvimento e a lançar produtos inovadores.
O tamanho e a forma dos orifícios numa placa de circuito impresso podem afetar o processo de fabrico de várias formas:

1. Processo de perfuração: O tamanho e a forma dos furos determinam o tipo de broca e a velocidade de perfuração necessária para os criar. Os furos mais pequenos requerem brocas mais pequenas e velocidades de perfuração mais lentas, enquanto os furos maiores requerem brocas maiores e velocidades de perfuração mais rápidas. A forma do furo também pode afetar a estabilidade da broca e a precisão do processo de perfuração.

2. Processo de revestimento: Após a perfuração dos orifícios, estes têm de ser revestidos com um material condutor para criar ligações eléctricas entre as diferentes camadas da placa de circuito impresso. O tamanho e a forma dos furos podem afetar o processo de galvanização, uma vez que os furos maiores ou de forma irregular podem exigir mais material de galvanização e tempos de galvanização mais longos.

3. Processo de soldadura: O tamanho e a forma dos orifícios também podem afetar o processo de soldadura. Os furos mais pequenos podem exigir uma colocação mais precisa dos componentes e técnicas de soldadura mais cuidadosas, enquanto os furos maiores podem permitir uma soldadura mais fácil.

4. Colocação de componentes: O tamanho e a forma dos furos também podem afetar a colocação dos componentes na placa de circuito impresso. Os orifícios mais pequenos podem limitar o tamanho dos componentes que podem ser utilizados, enquanto os orifícios maiores podem permitir uma maior flexibilidade na colocação dos componentes.

5. Conceção da placa de circuito impresso: A dimensão e a forma dos orifícios podem também afetar a conceção geral da placa de circuito impresso. As diferentes dimensões e formas dos furos podem exigir diferentes estratégias de encaminhamento e disposição, o que pode afetar a funcionalidade e o desempenho globais da placa de circuito impresso.

Em geral, o tamanho e a forma dos orifícios numa placa de circuito impresso podem ter um impacto significativo no processo de fabrico e devem ser cuidadosamente considerados durante a fase de conceção para garantir uma produção eficiente e precisa.

 

Etiquetas:china rigid flex electronic pcba,circuit boards assembly