10 layer pcb

A MTI é especializada em serviços de fabrico de produtos electrónicos chave na mão, fornecendo soluções abrangentes desde a documentação do produto até à entrega de produtos de alta qualidade em todo o mundo.

With a wide range, good quality, reasonable prices and stylish designs, our products are extensively used in aerospace.Our products are widely recognized and trusted by users and can meet continuously changing economic and social needs.We welcome new and old customers from all walks of life to contact us for future business relationships and mutual success!

Nome do produto 10 layer pcb
Palavra-chave 10 pcb,12 pin pcb connector,pcb board manufacturer,circuit card assembly vs pcb
Local de origem China
Espessura da placa 1~3,2mm
Sectores aplicáveis computadores e periféricos, etc.
Serviço Fabrico OEM/ODM
Certificado ISO-9001:2015, ISO-14001:2015,ISO-13485:2012.UL/CSA
Cor da máscara de solda Blue
Vantagem Mantemos a boa qualidade e o preço competitivo para garantir o benefício dos nossos clientes
País de vendas All over the world for example:Juan de Nova Island,Vietnam,Pakistan,Turks and Caicos Islands,Sweden,Palau,North Korea,Liberia,Afghanistan


Os seus produtos são sempre entregues antes do prazo e com a melhor qualidade.

Um dos nossos serviços de conceção de hardware é o fabrico de pequenos lotes, que lhe permite testar rapidamente a sua ideia e verificar a funcionalidade da conceção de hardware e da placa PCB.

Temos uma vasta experiência em engenharia para criar um esquema utilizando uma plataforma de software como o Altium Designer. Este layout mostra-lhe o aspeto exato e a colocação dos componentes na sua placa.

Guia de FAQs

1.Can PCBs be made with different thicknesses?

We operate our 10 layer pcb business with integrity and honesty.
Sim, as PCB (placas de circuito impresso) podem ser fabricadas com diferentes espessuras. A espessura de uma placa de circuito impresso é determinada pela espessura da camada de cobre e pela espessura do material de substrato. A espessura da camada de cobre pode variar entre 0,5 oz e 3 oz, enquanto a espessura do material de substrato pode variar entre 0,2 mm e 3,2 mm. As espessuras mais comuns para PCB são 1,6 mm e 0,8 mm, mas podem ser solicitadas espessuras personalizadas aos fabricantes de PCB. A espessura de uma placa de circuito impresso pode afetar a sua resistência mecânica, propriedades térmicas e desempenho elétrico.

2.What are the factors to consider when choosing the right PCB material for a specific application?

We are centered on customers and always pay attention to customers’ needs for 10 layer pcb products.
1. Electrical properties: The electrical properties of the PCB material, such as dielectric constant, loss tangent, and insulation resistance, should be carefully considered to ensure optimal performance for the specific application.

2. Thermal properties: The thermal conductivity and coefficient of thermal expansion of the PCB material are important factors to consider, especially for applications that require high power or operate in extreme temperatures.

3. Mechanical properties: The mechanical strength, stiffness, and flexibility of the PCB material should be evaluated to ensure it can withstand the physical stresses and strains of the application.

4. Chemical resistance: The PCB material should be resistant to any chemicals or solvents that it may come into contact with during its use.

5. Cost: The cost of the PCB material should be considered, as it can vary significantly depending on the type and quality of the material.

6. Availability: Some PCB materials may be more readily available than others, which can affect production timelines and costs.

7. Manufacturing process: The chosen PCB material should be compatible with the manufacturing process, such as etching, drilling, and plating, to ensure efficient and reliable production.

8. Environmental factors: The application environment, such as humidity, moisture, and exposure to UV light, should be taken into account when selecting a PCB material to ensure it can withstand these conditions.

9. Signal integrity: For high-frequency applications, the PCB material should have low signal loss and good signal integrity to prevent interference and ensure accurate signal transmission.

10. RoHS compliance: If the application requires compliance with environmental regulations, such as the Restriction of Hazardous Substances (RoHS) directive, the PCB material should be chosen accordingly.

3.What is the maximum current a PCB can handle?

We maintain a certain amount of R&D investment every year and continuously improve operational efficiency to provide better services to our cooperative customers.
The maximum current a PCB can handle depends on various factors such as the thickness and width of the copper traces, the type of material used for the PCB, and the ambient temperature. Generally, a standard PCB can handle currents up to 10-20 amps, while high-power PCBs can handle currents up to 50-100 amps. However, it is always recommended to consult with a PCB manufacturer for specific current handling capabilities for a particular PCB design.

4.What is testability in PCB design and how is it achieved?

Our 10 layer pcb products undergo strict quality control to ensure customer satisfaction.
Testability in PCB design refers to the ease and accuracy with which a printed circuit board (PCB) can be tested for functionality and performance. It is an important aspect of PCB design as it ensures that any defects or issues with the board can be identified and addressed before it is put into use.

Achieving testability in PCB design involves implementing certain design features and techniques that make it easier to test the board. These include:

1. Design for Test (DFT): This involves designing the PCB with specific test points and access points that allow for easy and accurate testing of different components and circuits.

2. Test Points: These are designated points on the PCB where test probes can be connected to measure voltage, current, and other parameters. Test points should be strategically placed to provide access to critical components and circuits.

3. Test Pads: These are small copper pads on the PCB that are used for attaching test probes. They should be placed close to the corresponding component or circuit for accurate testing.

4. Test Jigs: These are specialized tools used for testing PCBs. They can be custom-made for a specific PCB design and can greatly improve the accuracy and efficiency of testing.

5. Design for Manufacturability (DFM): This involves designing the PCB with manufacturing and testing in mind. This includes using standard components, avoiding complex layouts, and minimizing the number of layers to make testing easier.

6. Design for Debug (DFD): This involves designing the PCB with features that make it easier to identify and troubleshoot any issues that may arise during testing.

Overall, achieving testability in PCB design requires careful planning and consideration of the testing process. By implementing DFT, using test points and pads, and designing for manufacturability and debug, designers can ensure that their PCBs are easily testable and can be quickly and accurately diagnosed for any potential issues.

5. os PCB podem ter diferentes formas e tamanhos?

Our company has many years of 10 layer pcb experience and expertise.
Sim, as PCB (placas de circuito impresso) podem ter diferentes formas e tamanhos, dependendo da conceção específica e da finalidade do circuito. Podem variar de pequenas e compactas a grandes e complexas, e podem ser rectangulares, circulares ou mesmo de forma irregular. A forma e o tamanho de uma placa de circuito impresso são determinados pela disposição dos componentes e pela funcionalidade pretendida do circuito.

Can 10 layer pcb have different shapes and sizes?


Etiquetas:flexible pcb board , 12v led pcb , prototype printed circuit board assembly