1.27 mm pcb

Da oltre vent'anni, MTI si dedica a fornire servizi completi di produzione OEM/ODM ai clienti di tutto il mondo. Grazie alla nostra vasta esperienza nell'assemblaggio di circuiti stampati, abbiamo stabilito solidi rapporti di collaborazione con i distributori autorizzati di componenti. Questo ci permette di procurarci tutti i componenti richiesti a prezzi competitivi, garantendo ai nostri clienti un buon rapporto qualità-prezzo.

Nome del prodotto 1.27 mm pcb
Parola chiave 100 watt amplifier pcb,12 layer pcb thickness
Luogo di origine Cina
Spessore del pannello 1~3,2 mm
Industrie applicabili medico, ecc.
Servizio Produzione OEM/ODM
Certificato ISO-9001:2015, ISO-14001:2015,ISO-13485:2012.UL/CSA
Colore della maschera di saldatura Rosso
Vantaggio Manteniamo una buona qualità e un prezzo competitivo per garantire ai nostri clienti di trarne vantaggio.
Paese di vendita All over the world for example:Seychelles,Spratly Islands,Peru,Fiji,Montserrat,Thailand,Mongolia,Costa Rica,Cuba

 

Uno dei nostri servizi di progettazione hardware è la produzione in piccoli lotti, che consente di testare rapidamente la vostra idea e di verificare la funzionalità del progetto hardware e della scheda PCB.

Abbiamo una ricca esperienza di ingegneri per creare un layout utilizzando una piattaforma software come Altium Designer. Questo layout mostra l'aspetto e il posizionamento esatto dei componenti sulla scheda.

I vostri prodotti sono sempre in anticipo sui tempi e di altissima qualità.

Guida alle domande frequenti

1.Un PCB può avere diversi livelli di flessibilità?

We have a wide range of 1.27 mm pcb customer groups and establishes long -term cooperative relationships with partners.
Sì, un PCB (circuito stampato) può avere diversi livelli di flessibilità a seconda del design e dei materiali utilizzati. Alcuni PCB sono rigidi e non possono piegarsi o flettersi affatto, mentre altri sono progettati per essere flessibili e possono piegarsi o torcersi fino a un certo punto. Esistono anche PCB che presentano una combinazione di aree rigide e flessibili, noti come PCB flex-rigidi. Il livello di flessibilità di un PCB è determinato da fattori quali il tipo di materiale del substrato, lo spessore e il numero di strati e il tipo di progettazione del circuito.

2. Che cos'è la gestione termica nei PCB e perché è importante?

Abbiamo lavorato duramente per migliorare la qualità del servizio e soddisfare le esigenze dei clienti.
La gestione termica dei circuiti stampati (PCB) si riferisce alle tecniche e alle strategie utilizzate per controllare e dissipare il calore generato dai componenti elettronici sulla scheda. È importante perché il calore eccessivo può danneggiare i componenti, ridurne le prestazioni e persino causare il guasto della scheda. Una corretta gestione termica è fondamentale per garantire l'affidabilità e la longevità dei dispositivi elettronici.

The electronic components on a 1.27 mm pcb generate heat due to the flow of electricity through them. This heat can build up and cause the temperature of the PCB to rise, potentially leading to malfunctions or failures. Thermal management techniques are used to dissipate this heat and maintain the temperature of the PCB within safe operating limits.

Esistono diversi metodi di gestione termica dei PCB, tra cui i dissipatori di calore, i vias termici e i pad termici. I dissipatori di calore sono componenti metallici fissati ai componenti caldi del PCB per assorbire e dissipare il calore. I vias termici sono piccoli fori praticati nel PCB per consentire la fuoriuscita del calore verso l'altro lato della scheda. I pad termici sono utilizzati per trasferire il calore dai componenti al PCB e quindi all'aria circostante.

Una corretta gestione termica è particolarmente importante nei PCB ad alta potenza e ad alta densità, dove la generazione di calore è più significativa. È inoltre fondamentale nelle applicazioni in cui il PCB è esposto a temperature estreme o ad ambienti difficili. Senza una gestione termica efficace, le prestazioni e l'affidabilità dei dispositivi elettronici possono essere compromesse, con conseguenti costose riparazioni o sostituzioni.

3.In che modo il tipo di vias utilizzati influisce sulle prestazioni di un PCB?

Being one of the top 1.27 mm pcb manufacturers in China, We attach great importance to this detail.
Il tipo di vias utilizzati può influenzare le prestazioni di un PCB in diversi modi:

1. Integrità del segnale: I passanti possono agire come discontinuità nel percorso del segnale, causando riflessioni e degrado del segnale. Il tipo di via utilizzato può influire sull'impedenza e sull'integrità del segnale del PCB. Per i segnali ad alta velocità, è importante utilizzare vias a impedenza controllata per mantenere l'integrità del segnale.

2. Prestazioni elettriche: Anche il tipo di via utilizzato può influire sulle prestazioni elettriche del PCB. Ad esempio, i fori passanti hanno una resistenza e un'induttanza inferiori rispetto ai fori ciechi o interrati, il che può influire sull'erogazione di potenza e sulla trasmissione dei segnali sul PCB.

3. Prestazioni termiche: Anche i vias possono avere un ruolo nelle prestazioni termiche di un PCB. I fori passanti possono fungere da vialetti termici, consentendo al calore di dissiparsi da uno strato all'altro. I vias ciechi e interrati, invece, possono intrappolare il calore e influire sulla gestione termica complessiva del PCB.

4. Costo di produzione: Anche il tipo di via utilizzato può influire sul costo di produzione del PCB. I vias ciechi e interrati richiedono processi più complessi e costosi, mentre i vias a foro passante sono relativamente più semplici ed economici da produrre.

5. Dimensioni e densità del PCB: Anche il tipo di via utilizzato può influire sulle dimensioni e sulla densità del PCB. I vias ciechi e interrati occupano meno spazio sulla superficie del PCB, consentendo di realizzare progetti a densità più elevata. Ciò può essere vantaggioso per i PCB più piccoli e compatti.

In generale, il tipo di vias utilizzati può avere un impatto significativo sulle prestazioni, sul costo e sul design di un PCB. È importante considerare attentamente il tipo di vias necessari per un'applicazione specifica per garantire prestazioni e funzionalità ottimali del PCB.

4.How important is the trace width and spacing in a PCB design?

Our 1.27 mm pcb products have competitive and differentiated advantages, and actively promote digital transformation and innovation.
La larghezza e la spaziatura delle tracce in un progetto di PCB sono fattori cruciali che possono influenzare notevolmente le prestazioni e l'affidabilità del circuito. Ecco alcuni motivi:

1. Capacità di trasporto della corrente: La larghezza della traccia determina la quantità di corrente che può passare attraverso la traccia senza causare un riscaldamento eccessivo. Se la larghezza della traccia è troppo ridotta, può provocare il surriscaldamento e il danneggiamento del circuito.

2. Caduta di tensione: La larghezza della traccia influisce anche sulla caduta di tensione attraverso la traccia. Una traccia stretta presenta una resistenza più elevata, che si traduce in una maggiore caduta di tensione. Questo può causare una diminuzione del livello di tensione alla fine della traccia, influenzando le prestazioni del circuito.

3. Integrità del segnale: La spaziatura tra le tracce è fondamentale per mantenere l'integrità del segnale. Se la spaziatura è troppo stretta, può causare diafonia e interferenze tra i segnali, con conseguenti errori e malfunzionamenti nel circuito.

4. Gestione termica: Anche la spaziatura tra le tracce svolge un ruolo nella gestione termica. Una spaziatura adeguata tra le tracce consente una migliore circolazione dell'aria, che aiuta a dissipare il calore dal circuito. Questo aspetto è particolarmente importante per i circuiti ad alta potenza.

5. Vincoli di produzione: Anche la larghezza e la spaziatura delle tracce devono essere considerate nel processo di produzione. Se le tracce sono troppo vicine, può essere difficile incidere e ispezionare il PCB, con conseguenti difetti di produzione.

In sintesi, la larghezza e la spaziatura delle tracce sono parametri critici che devono essere attentamente considerati nella progettazione dei circuiti stampati per garantire il corretto funzionamento e l'affidabilità del circuito.

5.È possibile avere componenti diversi su ciascun lato di un PCB?

Ci concentriamo sull'innovazione e sul miglioramento continuo per mantenere un vantaggio competitivo.
Yes, it is possible to have different components on each side of a PCB. This is known as a double-sided PCB or a two-layer PCB. The components on each side can be connected through vias, which are small holes drilled through the 1.27 mm pcb that allow for electrical connections between the layers. This allows for more compact and complex circuit designs. However, it also adds complexity to the manufacturing process and may increase the cost of the PCB.

Is it possible to have different components on each side of a PCB?

6.How does the type of surface finish on a PCB affect its performance?

1.27 mm pcb is not a product only, but also can help you comes to money-making.
Il tipo di finitura superficiale di un PCB può influire sulle sue prestazioni in diversi modi:

1. Prestazioni elettriche: La finitura superficiale può influire sulle proprietà elettriche del PCB, come l'impedenza, l'integrità del segnale e la resistenza. Una finitura superficiale liscia e uniforme può contribuire a mantenere costanti le proprietà elettriche, mentre una finitura ruvida o irregolare può causare perdite di segnale e interferenze.

2. Saldabilità: La finitura superficiale gioca un ruolo fondamentale nella saldabilità del PCB. Una buona finitura superficiale dovrebbe fornire una superficie piatta e uniforme per i componenti da saldare. Una cattiva finitura superficiale può causare difetti di saldatura, come ponti, vuoti e scarsa bagnatura, che possono compromettere l'affidabilità del PCB.

3. Resistenza alla corrosione: La finitura superficiale può influire anche sulla resistenza alla corrosione del PCB. Una finitura superficiale di alta qualità può proteggere le tracce di rame dall'ossidazione e da altri fattori ambientali, garantendo l'affidabilità a lungo termine del PCB.

4. Processo di assemblaggio: Finiture superficiali diverse possono richiedere processi di assemblaggio diversi, come il tipo di saldatura utilizzata o la temperatura e il tempo necessari per il reflow. Ciò può influire sull'efficienza e sui costi complessivi del processo di assemblaggio dei PCB.

5. Costo: Anche il tipo di finitura superficiale può influire sul costo del PCB. Alcune finiture superficiali, come la doratura, sono più costose di altre, come l'HASL (Hot Air Solder Leveling). La scelta della giusta finitura superficiale può aiutare a bilanciare i requisiti di costo e prestazioni del PCB.

In generale, la finitura superficiale di un PCB può avere un impatto significativo sulle prestazioni, sull'affidabilità e sul costo. È essenziale considerare attentamente i requisiti e scegliere la finitura superficiale più adatta per l'applicazione specifica.

7.What are the different types of through-hole mounting techniques used in PCBs?

Abbiamo una capacità produttiva flessibile. Che si tratti di grandi ordini o di piccoli ordini, possiamo produrre e rilasciare la merce in modo tempestivo per soddisfare le esigenze dei clienti.
1. Placcatura dei fori passanti: È la tecnica di montaggio a foro passante più comune, in cui i fori del circuito stampato vengono placcati con un materiale conduttivo, solitamente rame, per creare una connessione tra gli strati della scheda.

2. Saldatura a foro passante: In questa tecnica, i componenti vengono inseriti nei fori placcati e poi saldati alle piazzole sul lato opposto della scheda. In questo modo si ottiene una forte connessione meccanica e una buona conduttività elettrica.

3. Rivettatura a foro passante: In questo metodo, i componenti vengono inseriti nei fori placcati e poi fissati con un rivetto o un perno. Questo metodo è comunemente utilizzato per i componenti ad alta potenza o in applicazioni in cui la scheda può essere soggetta a livelli elevati di vibrazioni.

4. Montaggio a pressione attraverso i fori: Questa tecnica prevede l'inserimento dei conduttori dei componenti nei fori placcati e la successiva pressione in posizione con uno strumento specializzato. In questo modo si ottiene una forte connessione meccanica senza bisogno di saldare.

5. Saldatura a onda con foro passante: In questo metodo, i componenti vengono inseriti nei fori placcati e poi fatti passare sopra un'onda di saldatura fusa, che crea un forte giunto di saldatura tra i conduttori dei componenti e le piazzole del PCB.

6. Saldatura a riflusso con foro passante: Questa tecnica è simile alla saldatura a onda, ma invece di passare sopra un'onda di saldatura fusa, la scheda viene riscaldata in un ambiente controllato per fondere la saldatura e creare un giunto resistente.

7. Saldatura manuale a foro passante: Si tratta di un metodo di saldatura manuale in cui i componenti vengono inseriti nei fori placcati e poi saldati a mano con un saldatore. È un metodo comunemente utilizzato per la produzione su piccola scala o per le riparazioni.

8. Pin-in-paste a foro passante: Questa tecnica prevede l'inserimento dei conduttori dei componenti nei fori placcati e l'applicazione di pasta saldante ai fori prima della saldatura a rifusione. In questo modo si ottiene una forte connessione meccanica e buone giunzioni di saldatura.

9. Pin-in-hole passante: con questo metodo, i conduttori dei componenti vengono inseriti nei fori placcati e poi piegati a formare un angolo retto, creando un collegamento meccanico sicuro. Questo metodo è comunemente utilizzato per i componenti con conduttori di grandi dimensioni, come i condensatori elettrolitici.

10. Montaggio manuale con foro passante: Si tratta di un metodo di assemblaggio manuale in cui i componenti vengono inseriti nei fori placcati e poi fissati con strumenti manuali, come viti o dadi. Questo metodo è comunemente utilizzato per componenti grandi o pesanti che richiedono un supporto aggiuntivo.

8.What are the factors to consider when choosing the right PCB material for a specific application?

We are centered on customers and always pay attention to customers’ needs for 1.27 mm pcb products.
1. Proprietà elettriche: Le proprietà elettriche del materiale del PCB, come la costante dielettrica, la tangente di perdita e la resistenza di isolamento, devono essere considerate attentamente per garantire prestazioni ottimali per l'applicazione specifica.

2. Proprietà termiche: La conduttività termica e il coefficiente di espansione termica del materiale del PCB sono fattori importanti da considerare, soprattutto per le applicazioni che richiedono una potenza elevata o che operano a temperature estreme.

3. Proprietà meccaniche: La resistenza meccanica, la rigidità e la flessibilità del materiale del PCB devono essere valutate per garantire che possa sopportare le sollecitazioni fisiche dell'applicazione.

4. Resistenza chimica: Il materiale del PCB deve essere resistente a qualsiasi sostanza chimica o solvente con cui possa entrare in contatto durante il suo utilizzo.

5. Costo: È necessario considerare il costo del materiale del PCB, che può variare in modo significativo a seconda del tipo e della qualità del materiale.

6. Disponibilità: Alcuni materiali per PCB possono essere più facilmente disponibili di altri, il che può influire sui tempi e sui costi di produzione.

7. Processo di produzione: Il materiale scelto per il PCB deve essere compatibile con il processo di produzione, come l'incisione, la foratura e la placcatura, per garantire una produzione efficiente e affidabile.

8. Fattori ambientali: L'ambiente di applicazione, come l'umidità, l'umidità e l'esposizione ai raggi UV, deve essere preso in considerazione quando si sceglie un materiale per PCB per garantire che possa resistere a queste condizioni.

9. Integrità del segnale: Per le applicazioni ad alta frequenza, il materiale del PCB deve avere una bassa perdita di segnale e una buona integrità del segnale per evitare interferenze e garantire una trasmissione accurata del segnale.

10. Conformità RoHS: Se l'applicazione richiede la conformità alle normative ambientali, come la direttiva RoHS (Restriction of Hazardous Substances), il materiale del PCB deve essere scelto di conseguenza.

 

Tag: Tag:gh60 pcb,Spessore del circuito stampato a 12 strati