Placa de circuito impresso de 1,27 mm
Há mais de duas décadas, a MTI se dedica a fornecer serviços abrangentes de fabricação OEM/ODM para clientes em todo o mundo. Com nossa ampla experiência em montagem de PCBs, estabelecemos fortes relações de colaboração com distribuidores autorizados de componentes. Isso nos permite obter todos os componentes necessários a preços competitivos, garantindo uma boa relação custo-benefício para nossos clientes.
Nome do produto | Placa de circuito impresso de 1,27 mm |
Palavra-chave | PCB de amplificador de 100 watts, espessura de 12 camadas |
Local de origem | China |
Espessura da placa | 1~3,2 mm |
Setores aplicáveis | médica, etc. |
Serviço | Fabricação OEM/ODM |
Certificado | ISO-9001:2015, ISO-14001:2015,ISO-13485:2012.UL/CSA |
Cor da máscara de solda | Vermelho |
Vantagens | Mantemos a boa qualidade e o preço competitivo para garantir que nossos clientes se beneficiem |
País de vendas | Em todo o mundo, por exemplo: Seychelles, Ilhas Spratly, Peru, Fiji, Montserrat, Tailândia, Mongólia, Costa Rica, Cuba |
Um de nossos serviços de projeto de hardware é a fabricação de pequenos lotes, que permite testar sua ideia rapidamente e verificar a funcionalidade do projeto de hardware e da placa PCB.
Temos uma vasta experiência em engenharia para criar um layout usando uma plataforma de software como o Altium Designer. Esse layout mostra a aparência e o posicionamento exatos dos componentes em sua placa.
Seus produtos são sempre entregues antes do prazo e com a mais alta qualidade.
Guia de perguntas frequentes
2) O que é o gerenciamento térmico em PCBs e por que ele é importante?
3) Como o tipo de vias usadas afeta o desempenho de uma placa de circuito impresso?
4) Qual é a importância da largura e do espaçamento dos traços em um projeto de PCB?
5) É possível ter componentes diferentes em cada lado de uma placa de circuito impresso?
6) Como o tipo de acabamento da superfície de uma placa de circuito impresso afeta seu desempenho?
7) Quais são os diferentes tipos de técnicas de montagem de furos passantes usados em PCBs?
8) Quais são os fatores a serem considerados ao escolher o material de PCB correto para uma aplicação específica?
1) Uma placa de circuito impresso pode ter diferentes níveis de flexibilidade?
Temos uma ampla gama de grupos de clientes de placas de circuito impresso de 1,27 mm e estabelecemos relações de cooperação de longo prazo com nossos parceiros.
Sim, uma PCB (placa de circuito impresso) pode ter diferentes níveis de flexibilidade, dependendo de seu design e dos materiais usados. Algumas PCBs são rígidas e não podem se dobrar ou flexionar de forma alguma, enquanto outras são projetadas para serem flexíveis e podem se dobrar ou torcer até certo ponto. Há também PCBs que têm uma combinação de áreas rígidas e flexíveis, conhecidas como PCBs rígidas flexíveis. O nível de flexibilidade em uma PCB é determinado por fatores como o tipo de material do substrato, a espessura e o número de camadas e o tipo de projeto do circuito.
2) O que é o gerenciamento térmico em PCBs e por que ele é importante?
Temos trabalhado arduamente para melhorar a qualidade do serviço e atender às necessidades dos clientes.
O gerenciamento térmico em PCBs (placas de circuito impresso) refere-se às técnicas e estratégias usadas para controlar e dissipar o calor gerado pelos componentes eletrônicos na placa. Isso é importante porque o calor excessivo pode danificar os componentes, reduzir seu desempenho e até mesmo causar falhas na PCB. O gerenciamento térmico adequado é fundamental para garantir a confiabilidade e a longevidade dos dispositivos eletrônicos.
Os componentes eletrônicos em uma placa de circuito impresso de 1,27 mm geram calor devido ao fluxo de eletricidade que passa por eles. Esse calor pode se acumular e fazer com que a temperatura da placa de circuito impresso aumente, o que pode levar a mau funcionamento ou falhas. As técnicas de gerenciamento térmico são usadas para dissipar esse calor e manter a temperatura da PCB dentro dos limites operacionais seguros.
Há vários métodos de gerenciamento térmico em PCBs, incluindo dissipadores de calor, vias térmicas e almofadas térmicas. Os dissipadores de calor são componentes metálicos conectados a componentes quentes na PCB para absorver e dissipar o calor. As vias térmicas são pequenos orifícios perfurados na PCB para permitir que o calor escape para o outro lado da placa. As almofadas térmicas são usadas para transferir o calor dos componentes para a PCB e depois para o ar ao redor.
O gerenciamento térmico adequado é especialmente importante em PCBs de alta potência e alta densidade, em que a geração de calor é mais significativa. Também é fundamental em aplicações em que a PCB é exposta a temperaturas extremas ou a ambientes agressivos. Sem um gerenciamento térmico eficaz, o desempenho e a confiabilidade dos dispositivos eletrônicos podem ser comprometidos, levando a reparos ou substituições dispendiosas.
3) Como o tipo de vias usadas afeta o desempenho de uma placa de circuito impresso?
Como um dos principais fabricantes de placas de circuito impresso de 1,27 mm da China, damos grande importância a esse detalhe.
O tipo de vias utilizadas pode afetar o desempenho de uma PCB de várias maneiras:
1. Integridade do sinal: As vias podem atuar como descontinuidades no caminho do sinal, causando reflexos e degradação do sinal. O tipo de via usada pode afetar a impedância e a integridade do sinal da placa de circuito impresso. Para sinais de alta velocidade, é importante usar vias de impedância controlada para manter a integridade do sinal.
2. Desempenho elétrico: O tipo de via usada também pode afetar o desempenho elétrico da PCB. Por exemplo, as vias através de orifícios têm menor resistência e indutância em comparação com as vias cegas ou enterradas, o que pode afetar o fornecimento de energia e a transmissão de sinais na PCB.
3. Desempenho térmico: As vias também podem desempenhar um papel importante no desempenho térmico de uma PCB. As vias através de orifícios podem atuar como vias térmicas, permitindo que o calor se dissipe de uma camada para outra. As vias cegas e enterradas, por outro lado, podem reter o calor e afetar o gerenciamento térmico geral da placa de circuito impresso.
4. Custo de fabricação: O tipo de via utilizada também pode afetar o custo de fabricação da placa de circuito impresso. As vias cegas e enterradas exigem processos mais complexos e caros, enquanto as vias de passagem são relativamente mais simples e mais baratas de fabricar.
5. Tamanho e densidade da placa de circuito impresso: O tipo de via usada também pode afetar o tamanho e a densidade da PCB. As vias cegas e enterradas ocupam menos espaço na superfície da PCB, permitindo projetos de maior densidade. Isso pode ser benéfico para PCBs menores e mais compactas.
De modo geral, o tipo de vias usadas pode ter um impacto significativo no desempenho, no custo e no design de uma placa de circuito impresso. É importante considerar cuidadosamente o tipo de vias necessárias para uma aplicação específica a fim de garantir o desempenho e a funcionalidade ideais da placa de circuito impresso.
4) Qual é a importância da largura e do espaçamento dos traços em um projeto de PCB?
Nossos produtos de placa de circuito impresso de 1,27 mm têm vantagens competitivas e diferenciadas e promovem ativamente a transformação digital e a inovação.
A largura e o espaçamento dos traços em um projeto de PCB são fatores cruciais que podem afetar muito o desempenho e a confiabilidade do circuito. Aqui estão alguns motivos para isso:
1. Capacidade de transporte de corrente: A largura do traço determina a quantidade de corrente que pode fluir através do traço sem causar aquecimento excessivo. Se a largura do traço for muito estreita, poderá causar superaquecimento e danos ao circuito.
2. Queda de tensão: A largura do traço também afeta a queda de tensão através do traço. Um traço estreito terá uma resistência maior, resultando em uma queda de tensão maior. Isso pode causar uma diminuição no nível de tensão no final do traço, afetando o desempenho do circuito.
3. Integridade do sinal: O espaçamento entre os traços é fundamental para manter a integridade do sinal. Se o espaçamento for muito estreito, poderá ocorrer diafonia e interferência entre os sinais, resultando em erros e mau funcionamento do circuito.
4. Gerenciamento térmico: O espaçamento entre os traços também desempenha uma função no gerenciamento térmico. O espaçamento adequado entre os traços permite uma melhor circulação de ar, o que ajuda a dissipar o calor do circuito. Isso é especialmente importante para circuitos de alta potência.
5. Restrições de fabricação: A largura e o espaçamento dos traços também precisam ser considerados no processo de fabricação. Se os traços estiverem muito próximos uns dos outros, pode ser difícil gravar e inspecionar a placa de circuito impresso, o que leva a defeitos de fabricação.
Em resumo, a largura e o espaçamento do traço são parâmetros críticos que precisam ser cuidadosamente considerados no projeto da placa de circuito impresso para garantir o funcionamento adequado e a confiabilidade do circuito.
5) É possível ter componentes diferentes em cada lado de uma placa de circuito impresso?
Nosso foco é a inovação e a melhoria contínua para manter uma vantagem competitiva.
Sim, é possível ter componentes diferentes em cada lado de uma PCB. Isso é conhecido como PCB de dupla face ou PCB de duas camadas. Os componentes de cada lado podem ser conectados por meio de vias, que são pequenos orifícios perfurados na placa de circuito impresso de 1,27 mm que permitem conexões elétricas entre as camadas. Isso permite projetos de circuitos mais compactos e complexos. Entretanto, também acrescenta complexidade ao processo de fabricação e pode aumentar o custo da PCB.
6) Como o tipo de acabamento da superfície de uma placa de circuito impresso afeta seu desempenho?
A placa de circuito impresso de 1,27 mm não é apenas um produto, mas também pode ajudá-lo a ganhar dinheiro.
O tipo de acabamento da superfície de uma placa de circuito impresso pode afetar seu desempenho de várias maneiras:
1. Desempenho elétrico: O acabamento da superfície pode afetar as propriedades elétricas da placa de circuito impresso, como impedância, integridade do sinal e resistência. Um acabamento de superfície liso e uniforme pode ajudar a manter propriedades elétricas consistentes, enquanto um acabamento áspero ou irregular pode causar perda de sinal e interferência.
2. Soldabilidade: O acabamento da superfície desempenha um papel fundamental na soldabilidade da placa de circuito impresso. Um bom acabamento de superfície deve proporcionar uma superfície plana e uniforme para os componentes a serem soldados. Um acabamento de superfície ruim pode resultar em defeitos de solda, como pontes, vazios e umedecimento deficiente, o que pode afetar a confiabilidade da PCB.
3. Resistência à corrosão: O acabamento da superfície também pode afetar a resistência à corrosão da placa de circuito impresso. Um acabamento de superfície de alta qualidade pode proteger os traços de cobre da oxidação e de outros fatores ambientais, garantindo a confiabilidade da placa de circuito impresso a longo prazo.
4. Processo de montagem: Diferentes acabamentos de superfície podem exigir diferentes processos de montagem, como o tipo de solda usado ou a temperatura e o tempo necessários para o refluxo. Isso pode afetar a eficiência geral e o custo do processo de montagem da PCB.
5. Custo: O tipo de acabamento da superfície também pode afetar o custo da placa de circuito impresso. Alguns acabamentos de superfície, como o revestimento de ouro, são mais caros do que outros, como o HASL (Hot Air Solder Leveling). A escolha do acabamento de superfície correto pode ajudar a equilibrar os requisitos de custo e desempenho da placa de circuito impresso.
De modo geral, o acabamento da superfície de uma placa de circuito impresso pode afetar significativamente seu desempenho, confiabilidade e custo. É essencial considerar cuidadosamente os requisitos e escolher o acabamento de superfície mais adequado para a aplicação específica.
7) Quais são os diferentes tipos de técnicas de montagem de furos passantes usados em PCBs?
Temos capacidade de produção flexível. Sejam pedidos grandes ou pequenos, é possível produzir e liberar mercadorias em tempo hábil para atender às necessidades dos clientes.
1. Revestimento de orifício passante: Essa é a técnica mais comum de montagem através de orifícios, na qual os orifícios da placa de circuito impresso são revestidos com um material condutor, geralmente cobre, para criar uma conexão entre as camadas da placa.
2. Solda através do orifício: Nessa técnica, os componentes são inseridos nos orifícios revestidos e, em seguida, soldados às almofadas no lado oposto da placa. Isso proporciona uma forte conexão mecânica e boa condutividade elétrica.
3. Rebitagem de furo passante: Nesse método, os componentes são inseridos nos orifícios revestidos e, em seguida, fixados com um rebite ou pino. Esse método é comumente usado para componentes de alta potência ou em aplicações em que a placa pode sofrer altos níveis de vibração.
4. Press-Fit através do orifício: Essa técnica envolve a inserção dos cabos dos componentes nos orifícios revestidos e, em seguida, pressioná-los no lugar usando uma ferramenta especializada. Isso proporciona uma forte conexão mecânica sem a necessidade de solda.
5. Solda por onda através do orifício: Nesse método, os componentes são inseridos nos orifícios revestidos e, em seguida, passam por uma onda de solda derretida, o que cria uma forte junta de solda entre os condutores dos componentes e as almofadas da PCB.
6. Solda por refluxo através de orifício: Essa técnica é semelhante à solda por onda, mas, em vez de passar sobre uma onda de solda derretida, a placa é aquecida em um ambiente controlado para derreter a solda e criar uma junta forte.
7. Solda manual através de orifícios: Esse é um método manual de soldagem em que os componentes são inseridos nos orifícios revestidos e, em seguida, soldados à mão usando um ferro de solda. Esse método é normalmente usado para produção em pequena escala ou para reparos.
8. Pin-in-Paste através do orifício: Essa técnica envolve a inserção dos cabos dos componentes nos orifícios revestidos e, em seguida, a aplicação de pasta de solda nos orifícios antes da soldagem por refluxo. Isso proporciona uma forte conexão mecânica e boas juntas de solda.
9. Through-Hole Pin-in-Hole: nesse método, os cabos dos componentes são inseridos nos orifícios revestidos e, em seguida, dobrados para formar um ângulo reto, criando uma conexão mecânica segura. Esse método é comumente usado para componentes com cabos grandes, como capacitores eletrolíticos.
10. Montagem manual com furo passante: Esse é um método manual de montagem em que os componentes são inseridos nos furos revestidos e, em seguida, fixados com ferramentas manuais, como parafusos ou porcas. Esse método é comumente usado para componentes grandes ou pesados que exigem suporte adicional.
8) Quais são os fatores a serem considerados ao escolher o material de PCB correto para uma aplicação específica?
Nosso foco é o cliente e sempre prestamos atenção às suas necessidades de produtos de placa de circuito impresso de 1,27 mm.
1. Propriedades elétricas: As propriedades elétricas do material da placa de circuito impresso, como constante dielétrica, tangente de perda e resistência de isolamento, devem ser cuidadosamente consideradas para garantir o desempenho ideal para a aplicação específica.
2. Propriedades térmicas: A condutividade térmica e o coeficiente de expansão térmica do material da placa de circuito impresso são fatores importantes a serem considerados, especialmente para aplicações que exigem alta potência ou operam em temperaturas extremas.
3. Propriedades mecânicas: A resistência mecânica, a rigidez e a flexibilidade do material da placa de circuito impresso devem ser avaliadas para garantir que ele possa suportar as tensões e os esforços físicos da aplicação.
4. Resistência química: O material da PCB deve ser resistente a quaisquer produtos químicos ou solventes com os quais possa entrar em contato durante o uso.
5. Custo: O custo do material da placa de circuito impresso deve ser considerado, pois pode variar significativamente dependendo do tipo e da qualidade do material.
6. Disponibilidade: Alguns materiais de PCB podem estar mais prontamente disponíveis do que outros, o que pode afetar os cronogramas e os custos de produção.
7. Processo de fabricação: O material de PCB escolhido deve ser compatível com o processo de fabricação, como gravação, perfuração e revestimento, para garantir uma produção eficiente e confiável.
8. Fatores ambientais: O ambiente da aplicação, como umidade, umidade e exposição à luz UV, deve ser levado em consideração ao selecionar um material de PCB para garantir que ele possa suportar essas condições.
9. Integridade do sinal: Para aplicações de alta frequência, o material da placa de circuito impresso deve ter baixa perda de sinal e boa integridade de sinal para evitar interferência e garantir a transmissão precisa do sinal.
10. Conformidade com RoHS: Se a aplicação exigir conformidade com as normas ambientais, como a diretiva RoHS (Restriction of Hazardous Substances, Restrição de Substâncias Perigosas), o material da PCB deverá ser escolhido de acordo.
Tags:gh60 pcb,Espessura da placa de circuito impresso de 12 camadas