Durante mais de duas décadas, a MTI tem-se dedicado a fornecer serviços abrangentes de fabrico OEM/ODM a clientes em todo o mundo. Com a nossa vasta experiência em montagem de PCB, estabelecemos fortes relações de colaboração com distribuidores de componentes autorizados. Isto permite-nos obter quaisquer componentes necessários a preços competitivos, assegurando uma boa relação custo-eficácia para os nossos clientes.
Nome do produto | Placa de circuito impresso de 1,27 mm |
Palavra-chave | pcb de amplificador de 100 watts, espessura de pcb de 12 camadas |
Local de origem | China |
Espessura da placa | 1~3,2mm |
Sectores aplicáveis | médico, etc. |
Serviço | Fabrico OEM/ODM |
Certificado | ISO-9001:2015, ISO-14001:2015,ISO-13485:2012.UL/CSA |
Cor da máscara de solda | Vermelho |
Vantagem | Mantemos a boa qualidade e o preço competitivo para garantir o benefício dos nossos clientes |
País de vendas | Em todo o mundo, por exemplo: Seychelles, Ilhas Spratly, Peru, Fiji, Montserrat, Tailândia, Mongólia, Costa Rica, Cuba |
Um dos nossos serviços de conceção de hardware é o fabrico de pequenos lotes, que lhe permite testar rapidamente a sua ideia e verificar a funcionalidade da conceção de hardware e da placa PCB.
Temos uma vasta experiência em engenharia para criar um esquema utilizando uma plataforma de software como o Altium Designer. Este layout mostra-lhe o aspeto exato e a colocação dos componentes na sua placa.
Os seus produtos são sempre entregues antes do prazo e com a melhor qualidade.
Guia de FAQs
2. o que é a gestão térmica em PCBs e porque é que é importante?
3. como é que o tipo de vias utilizadas afecta o desempenho de uma placa de circuito impresso?
4.Qual a importância da largura e do espaçamento dos traços num projeto de PCB?
5) É possível ter componentes diferentes em cada lado de uma placa de circuito impresso?
6. como é que o tipo de acabamento da superfície de uma placa de circuito impresso afecta o seu desempenho?
7) Quais são os diferentes tipos de técnicas de montagem através de orifícios utilizados em PCB?
8) Quais são os factores a considerar ao escolher o material de PCB adequado para uma aplicação específica?
1) Uma placa de circuito impresso pode ter diferentes níveis de flexibilidade?
Temos uma vasta gama de grupos de clientes de placas de circuito impresso de 1,27 mm e estabelecemos relações de cooperação a longo prazo com os nossos parceiros.
Sim, uma PCB (placa de circuito impresso) pode ter diferentes níveis de flexibilidade, dependendo da sua conceção e dos materiais utilizados. Algumas PCB são rígidas e não podem dobrar ou flexionar de todo, enquanto outras são concebidas para serem flexíveis e podem dobrar ou torcer até um certo grau. Existem também PCBs que têm uma combinação de áreas rígidas e flexíveis, conhecidas como PCBs flex-rígidas. O nível de flexibilidade de uma placa de circuito impresso é determinado por factores como o tipo de material do substrato, a espessura e o número de camadas e o tipo de conceção do circuito.
2. o que é a gestão térmica em PCBs e porque é que é importante?
Temos trabalhado arduamente para melhorar a qualidade do serviço e satisfazer as necessidades dos clientes.
A gestão térmica em PCB (placas de circuitos impressos) refere-se às técnicas e estratégias utilizadas para controlar e dissipar o calor gerado pelos componentes electrónicos na placa. É importante porque o calor excessivo pode danificar os componentes, reduzir o seu desempenho e até provocar a falha da placa de circuito impresso. A gestão térmica adequada é crucial para garantir a fiabilidade e a longevidade dos dispositivos electrónicos.
Os componentes electrónicos de uma placa de circuito impresso de 1,27 mm geram calor devido ao fluxo de eletricidade que os atravessa. Este calor pode acumular-se e provocar o aumento da temperatura da placa de circuito impresso, o que pode levar a avarias ou falhas. As técnicas de gestão térmica são utilizadas para dissipar este calor e manter a temperatura da placa de circuito impresso dentro de limites de funcionamento seguros.
Existem vários métodos de gestão térmica em PCBs, incluindo dissipadores de calor, vias térmicas e almofadas térmicas. Os dissipadores de calor são componentes metálicos ligados a componentes quentes na PCB para absorver e dissipar o calor. As vias térmicas são pequenos orifícios perfurados na placa de circuito impresso para permitir a saída de calor para o outro lado da placa. As almofadas térmicas são utilizadas para transferir o calor dos componentes para a placa de circuito impresso e depois para o ar circundante.
Uma gestão térmica adequada é especialmente importante em PCB de alta potência e alta densidade, onde a geração de calor é mais significativa. É também crucial em aplicações em que a placa de circuito impresso está exposta a temperaturas extremas ou a ambientes agressivos. Sem uma gestão térmica eficaz, o desempenho e a fiabilidade dos dispositivos electrónicos podem ser comprometidos, levando a reparações ou substituições dispendiosas.
3. como é que o tipo de vias utilizadas afecta o desempenho de uma placa de circuito impresso?
Sendo um dos principais fabricantes de placas de circuito impresso de 1,27 mm na China, damos grande importância a este detalhe.
O tipo de vias utilizadas pode afetar o desempenho de uma PCB de várias formas:
1. Integridade do sinal: As vias podem atuar como descontinuidades no percurso do sinal, causando reflexos e degradação do sinal. O tipo de via utilizada pode afetar a impedância e a integridade do sinal da placa de circuito impresso. Para sinais de alta velocidade, é importante utilizar vias de impedância controlada para manter a integridade do sinal.
2. Desempenho elétrico: O tipo de via utilizada também pode afetar o desempenho elétrico da placa de circuito impresso. Por exemplo, as vias através de orifícios têm menor resistência e indutância do que as vias cegas ou enterradas, o que pode afetar o fornecimento de energia e a transmissão de sinais na placa de circuito impresso.
3. Desempenho térmico: As vias também podem desempenhar um papel no desempenho térmico de uma placa de circuito impresso. As vias de passagem podem atuar como vias térmicas, permitindo que o calor se dissipe de uma camada para outra. As vias cegas e enterradas, por outro lado, podem reter o calor e afetar a gestão térmica global da placa de circuito impresso.
4. Custo de fabrico: O tipo de via utilizada também pode ter impacto no custo de fabrico da placa de circuito impresso. As vias cegas e enterradas requerem processos mais complexos e dispendiosos, ao passo que as vias com orifícios de passagem são relativamente mais simples e mais baratas de fabricar.
5. Dimensão e densidade da placa de circuito impresso: O tipo de via utilizada também pode afetar o tamanho e a densidade da placa de circuito impresso. As vias cegas e enterradas ocupam menos espaço na superfície da placa de circuito impresso, o que permite desenhos de maior densidade. Isto pode ser benéfico para PCB mais pequenas e compactas.
De um modo geral, o tipo de vias utilizadas pode ter um impacto significativo no desempenho, no custo e na conceção de uma placa de circuito impresso. É importante considerar cuidadosamente o tipo de vias necessárias para uma aplicação específica, a fim de garantir um desempenho e uma funcionalidade óptimos da placa de circuito impresso.
4.Qual a importância da largura e do espaçamento dos traços num projeto de PCB?
Os nossos produtos de placa de circuito impresso de 1,27 mm têm vantagens competitivas e diferenciadas, e promovem ativamente a transformação digital e a inovação.
A largura e o espaçamento dos traços num desenho de PCB são factores cruciais que podem afetar grandemente o desempenho e a fiabilidade do circuito. Eis algumas razões para tal:
1. Capacidade de transporte de corrente: A largura do traço determina a quantidade de corrente que pode fluir através do traço sem causar aquecimento excessivo. Se a largura do traço for demasiado estreita, pode provocar um sobreaquecimento e danificar o circuito.
2. Queda de tensão: A largura do traço também afecta a queda de tensão através do traço. Um traço estreito terá uma resistência mais elevada, resultando numa maior queda de tensão. Isto pode causar uma diminuição do nível de tensão no final do traço, afectando o desempenho do circuito.
3. Integridade do sinal: O espaçamento entre traços é fundamental para manter a integridade do sinal. Se o espaçamento for demasiado estreito, pode dar origem a diafonia e interferência entre sinais, resultando em erros e mau funcionamento do circuito.
4. Gestão térmica: O espaçamento entre traços também desempenha um papel na gestão térmica. Um espaçamento adequado entre traços permite uma melhor circulação de ar, o que ajuda a dissipar o calor do circuito. Isto é especialmente importante para circuitos de alta potência.
5. Restrições de fabrico: A largura e o espaçamento dos traços também têm de ser considerados no processo de fabrico. Se os traços estiverem demasiado próximos uns dos outros, pode ser difícil gravar e inspecionar a placa de circuito impresso, o que pode dar origem a defeitos de fabrico.
Em resumo, a largura e o espaçamento dos traços são parâmetros críticos que devem ser cuidadosamente considerados na conceção da placa de circuito impresso para garantir o bom funcionamento e a fiabilidade do circuito.
5) É possível ter componentes diferentes em cada lado de uma placa de circuito impresso?
Concentramo-nos na inovação e na melhoria contínua para manter uma vantagem competitiva.
Sim, é possível ter componentes diferentes em cada lado de uma placa de circuito impresso. Isto é conhecido como uma PCB de dupla face ou uma PCB de duas camadas. Os componentes de cada lado podem ser ligados através de vias, que são pequenos orifícios perfurados na placa de circuito impresso de 1,27 mm que permitem ligações eléctricas entre as camadas. Isto permite desenhos de circuitos mais compactos e complexos. No entanto, também acrescenta complexidade ao processo de fabrico e pode aumentar o custo da placa de circuito impresso.
6. como é que o tipo de acabamento da superfície de uma placa de circuito impresso afecta o seu desempenho?
A placa de circuito impresso de 1,27 mm não é apenas um produto, mas também pode ajudá-lo a ganhar dinheiro.
O tipo de acabamento da superfície de uma placa de circuito impresso pode afetar o seu desempenho de várias formas:
1. Desempenho elétrico: O acabamento da superfície pode ter impacto nas propriedades eléctricas da placa de circuito impresso, como a impedância, a integridade do sinal e a resistência. Um acabamento de superfície liso e uniforme pode ajudar a manter propriedades eléctricas consistentes, enquanto um acabamento áspero ou irregular pode causar perda de sinal e interferência.
2. Soldabilidade: O acabamento da superfície desempenha um papel crucial na soldabilidade da placa de circuito impresso. Um bom acabamento de superfície deve proporcionar uma superfície plana e uniforme para os componentes a soldar. Um acabamento superficial deficiente pode resultar em defeitos de soldadura, como pontes, vazios e humidade deficiente, que podem afetar a fiabilidade da placa de circuito impresso.
3. Resistência à corrosão: O acabamento da superfície também pode afetar a resistência à corrosão da placa de circuito impresso. Um acabamento de superfície de alta qualidade pode proteger os traços de cobre da oxidação e de outros factores ambientais, garantindo a fiabilidade a longo prazo da placa de circuito impresso.
4. Processo de montagem: Diferentes acabamentos de superfície podem exigir diferentes processos de montagem, como o tipo de solda utilizado ou a temperatura e o tempo necessários para o refluxo. Isto pode afetar a eficiência global e o custo do processo de montagem de PCB.
5. Custo: O tipo de acabamento de superfície também pode ter impacto no custo da placa de circuito impresso. Alguns acabamentos de superfície, como o revestimento a ouro, são mais caros do que outros, como o HASL (Hot Air Solder Leveling). A escolha do acabamento de superfície correto pode ajudar a equilibrar os requisitos de custo e desempenho da placa de circuito impresso.
Globalmente, o acabamento da superfície de uma placa de circuito impresso pode ter um impacto significativo no seu desempenho, fiabilidade e custo. É essencial considerar cuidadosamente os requisitos e escolher o acabamento de superfície mais adequado para a aplicação específica.
7) Quais são os diferentes tipos de técnicas de montagem através de orifícios utilizados em PCB?
Dispomos de uma capacidade de produção flexível. Quer se trate de grandes encomendas ou de pequenas encomendas, é possível produzir e libertar mercadorias em tempo útil para satisfazer as necessidades dos clientes.
1. Revestimento de orifícios: Esta é a técnica mais comum de montagem através de orifícios, em que os orifícios da placa de circuito impresso são revestidos com um material condutor, normalmente cobre, para criar uma ligação entre as camadas da placa.
2. Soldadura através de orifícios: Nesta técnica, os componentes são inseridos nos orifícios revestidos e depois soldados às almofadas no lado oposto da placa. Isto proporciona uma forte ligação mecânica e uma boa condutividade eléctrica.
3. Rebitagem de furos passantes: Neste método, os componentes são inseridos nos orifícios revestidos e depois fixados com um rebite ou cavilha. Este método é normalmente utilizado para componentes de alta potência ou em aplicações em que a placa pode sofrer níveis elevados de vibração.
4. Press-Fit através do orifício: Esta técnica consiste em inserir os cabos dos componentes nos orifícios revestidos e, em seguida, pressioná-los no lugar utilizando uma ferramenta especializada. Isto proporciona uma forte ligação mecânica sem necessidade de soldadura.
5. Soldadura por onda através de orifício: Neste método, os componentes são inseridos nos orifícios revestidos e, em seguida, passados sobre uma onda de solda fundida, o que cria uma forte junta de solda entre os condutores dos componentes e as almofadas da placa de circuito impresso.
6. Soldadura de refluxo através de orifícios: Esta técnica é semelhante à soldadura por onda, mas em vez de passar por cima de uma onda de solda derretida, a placa é aquecida num ambiente controlado para derreter a solda e criar uma junta forte.
7. Soldadura manual através de orifícios: Trata-se de um método manual de soldadura em que os componentes são inseridos nos orifícios revestidos e depois soldados à mão com um ferro de soldar. Este método é normalmente utilizado para a produção em pequena escala ou para reparações.
8. Pin-in-Paste através do furo: Esta técnica consiste em inserir os cabos dos componentes nos orifícios revestidos e, em seguida, aplicar pasta de solda nos orifícios antes da soldadura por refluxo. Isto proporciona uma forte ligação mecânica e boas juntas de soldadura.
9. Through-Hole Pin-in-Hole: Neste método, os cabos dos componentes são inseridos nos orifícios revestidos e depois dobrados para formar um ângulo reto, criando uma ligação mecânica segura. Este método é normalmente utilizado para componentes com cabos grandes, como condensadores electrolíticos.
10. Montagem manual através de orifícios: Trata-se de um método de montagem manual em que os componentes são inseridos nos orifícios revestidos e depois fixados com ferramentas manuais, como parafusos ou porcas. Este método é normalmente utilizado para componentes grandes ou pesados que requerem apoio adicional.
8) Quais são os factores a considerar ao escolher o material de PCB adequado para uma aplicação específica?
Estamos centrados nos clientes e sempre prestamos atenção às necessidades dos clientes para produtos de placa de circuito impresso de 1,27 mm.
1. Propriedades eléctricas: As propriedades eléctricas do material da placa de circuito impresso, como a constante dieléctrica, a tangente de perda e a resistência de isolamento, devem ser cuidadosamente consideradas para garantir um desempenho ótimo para a aplicação específica.
2. Propriedades térmicas: A condutividade térmica e o coeficiente de expansão térmica do material da placa de circuito impresso são factores importantes a considerar, especialmente para aplicações que requerem elevada potência ou funcionam a temperaturas extremas.
3. Propriedades mecânicas: A resistência mecânica, a rigidez e a flexibilidade do material da placa de circuito impresso devem ser avaliadas para garantir que pode suportar as tensões e deformações físicas da aplicação.
4. Resistência química: O material do PCB deve ser resistente a quaisquer produtos químicos ou solventes com que possa entrar em contacto durante a sua utilização.
5. Custo: O custo do material da placa de circuito impresso deve ser considerado, uma vez que pode variar significativamente consoante o tipo e a qualidade do material.
6. Disponibilidade: Alguns materiais para PCB podem estar mais facilmente disponíveis do que outros, o que pode afetar os prazos e os custos de produção.
7. Processo de fabrico: O material escolhido para a placa de circuito impresso deve ser compatível com o processo de fabrico, como a gravação, a perfuração e o revestimento, para garantir uma produção eficiente e fiável.
8. Factores ambientais: O ambiente de aplicação, como a humidade e a exposição à luz UV, deve ser tido em conta ao selecionar um material para PCB, de modo a garantir que este resiste a estas condições.
9. Integridade do sinal: Para aplicações de alta frequência, o material da placa de circuito impresso deve ter uma baixa perda de sinal e uma boa integridade do sinal para evitar interferências e garantir uma transmissão exacta do sinal.
10. Conformidade com a diretiva RoHS: Se a aplicação exigir o cumprimento de regulamentos ambientais, como a diretiva Restrição de Substâncias Perigosas (RoHS), o material PCB deve ser escolhido em conformidade.
Etiquetas:gh60 pcb,espessura da placa de circuito impresso de 12 camadas