10 pcb

MTI es un fabricante de placas de circuito impreso (PCB) de alta precisión. Estamos especializados en la fabricación de placas de circuito impreso de alta precisión de doble cara y multicapa. Ofrecemos productos de alta calidad y un servicio más rápido para empresas de alta tecnología.

We have a group of experienced staff and high-quality management team, set up a complete quality assurance system. Products include FR-4 PCB, Metal PCB and RFPCB (ceramic PCB, PTFE PCB), 10 pcb,etc. Have rich experience in the production of thick copper PCB, RF PCB, high Tg PCB, HDI PCB.With ISO9001, ISO14001, TS16949, ISO 13485, RoHS certifications.

Nombre del producto 10 pcb
Palabra clave 108 key pcb,pcb fab,China circuit board assembly,1.2mm pcb,pcb assembly and manufacturing
Lugar de origen China
Grosor del tablero 1~3,2 mm
Industrias aplicables electrónica del automóvil, etc.
Servicio Fabricación OEM/ODM
Certificado ISO-9001:2015, ISO-14001:2015,ISO-13485:2012.UL/CSA
Color de la máscara de soldadura Azul
Ventaja Mantenemos una buena calidad y un precio competitivo para que nuestros clientes se beneficien
País de ventas All over the world for example:Albania,Algeria,Morocco,Bangladesh,Poland,Europa Island,Croatia,Glorioso Islands

 

Sus productos siempre se entregan antes de lo previsto y con la máxima calidad.

Contamos con una amplia experiencia en ingeniería para crear un diseño utilizando una plataforma de software como Altium Designer. Este diseño muestra la apariencia exacta y la colocación de los componentes en la placa.

Uno de nuestros servicios de diseño de hardware es la fabricación de lotes pequeños, que le permite probar su idea rápidamente y verificar la funcionalidad del diseño de hardware y la placa de circuito impreso.

Guía de preguntas frecuentes

1.¿Cuáles son las principales características de un circuito impreso?

Nos comprometemos a ofrecer soluciones personalizadas y a establecer relaciones estratégicas de cooperación a largo plazo con nuestros clientes.
1. Sustrato: El material base sobre el que se imprime el circuito, normalmente de fibra de vidrio o epoxi compuesto.

2. Trazas conductoras: Finas líneas de cobre que conectan los componentes en la placa de circuito impreso.

3. Almohadillas: Pequeñas zonas de cobre en la superficie de la placa de circuito impreso donde se sueldan los componentes.

4. Vías: Orificios perforados a través de la placa de circuito impreso para conectar las distintas capas del circuito.

5. Máscara de soldadura: Capa de material protector que cubre las pistas y almohadillas de cobre, evitando cortocircuitos accidentales.

6. Serigrafía: Capa de tinta que se imprime en la placa de circuito impreso para etiquetar los componentes y proporcionar otra información útil.

7. Componentes: Dispositivos electrónicos como resistencias, condensadores y circuitos integrados que se montan en la placa de circuito impreso.

8. Agujeros de montaje: Orificios taladrados en la placa de circuito impreso para poder fijarla de forma segura a un dispositivo o caja de mayor tamaño.

9. Pila de cobre: Grandes áreas de cobre que se utilizan para proporcionar una toma de tierra común o un plano de potencia para el circuito.

10. Conectores de borde: Contactos metálicos en el borde de la placa de circuito impreso que permiten conectarla a otros circuitos o dispositivos.

11. Puentes de soldadura: Pequeñas zonas de cobre expuesto que permiten la conexión de dos o más trazas.

12. Puntos de prueba: Pequeñas almohadillas u orificios en la placa de circuito impreso que permiten probar y solucionar problemas del circuito.

13. Leyenda serigráfica: Texto o símbolos impresos en la capa serigráfica que proporcionan información adicional sobre la placa de circuito impreso y sus componentes.

14. Designadores: Letras o números impresos en la capa serigráfica para identificar componentes específicos en la placa de circuito impreso.

15. Designadores de referencia: Combinación de letras y números que identifican la ubicación de un componente en la placa de circuito impreso según el diagrama esquemático.

2.Can PCBs be designed with high-speed and high-frequency applications in mind?

We attach importance to the innovation ability and team spirit of employees, have advanced R & D facilities and laboratories, and have a good quality management system.
Yes, PCBs can be designed with high-speed and high-frequency applications in mind. This involves careful consideration of the layout, trace routing, and component placement to minimize signal loss and interference. Specialized materials and techniques, such as controlled impedance routing and differential pairs, can also be used to improve signal integrity and reduce noise. Additionally, the use of advanced simulation and analysis tools can help optimize the design for high-speed and high-frequency performance.

3.¿Cómo soportan las placas de circuito impreso la integración de distintos componentes electrónicos?

We actively participate in the 10 pcb industry associations and organization activities. The corporate social responsibility performed well, and the focus of brand building and promotion.
Las placas de circuito impreso (PCB) son esenciales para la integración de distintos componentes electrónicos en dispositivos electrónicos. Proporcionan una plataforma para conectar y soportar los distintos componentes, permitiéndoles trabajar juntos a la perfección. He aquí algunas formas en las que las placas de circuito impreso contribuyen a la integración de distintos componentes electrónicos:

1. Conexiones eléctricas: Las placas de circuito impreso tienen una red de pistas de cobre que conectan los distintos componentes electrónicos de la placa. Estas trazas actúan como conductores, permitiendo que la electricidad fluya entre los componentes y que éstos se comuniquen y trabajen juntos.

2. Superficie de montaje: Las placas de circuito impreso proporcionan una superficie de montaje estable y segura para los componentes electrónicos. Los componentes se sueldan a la placa, lo que garantiza que queden firmemente sujetos y no se muevan ni se suelten durante el funcionamiento.

3. Ahorro de espacio: Las placas de circuito impreso están diseñadas para ser compactas y ahorrar espacio, lo que permite integrar varios componentes en una sola placa. Esto es especialmente útil en dispositivos electrónicos pequeños donde el espacio es limitado.

4. Personalización: Las placas de circuito impreso pueden personalizarse para alojar distintos tipos y tamaños de componentes electrónicos. Esto permite flexibilidad en el diseño y la integración de una amplia gama de componentes, lo que facilita la creación de dispositivos electrónicos complejos.

5. Enrutamiento de señales: Las placas de circuito impreso tienen varias capas, cada una de ellas dedicada a una función específica. Esto permite un enrutamiento eficiente de las señales entre los componentes, reduciendo las interferencias y garantizando que los componentes puedan comunicarse eficazmente.

6. Distribución de energía: Las placas de circuito impreso tienen planos de alimentación dedicados que distribuyen la energía a los distintos componentes de la placa. Esto garantiza que cada componente reciba la cantidad de energía necesaria, evitando daños y asegurando su correcto funcionamiento.

7. Gestión térmica: Las placas de circuito impreso también desempeñan un papel crucial en la gestión del calor generado por los componentes electrónicos. Tienen capas de cobre que actúan como disipadores térmicos, disipando el calor y evitando que los componentes se sobrecalienten.

En resumen, las placas de circuito impreso constituyen una plataforma sólida y eficaz para integrar distintos componentes electrónicos. Permiten que los componentes trabajen juntos a la perfección, garantizando el correcto funcionamiento de los dispositivos electrónicos.

4.¿Las placas de circuito impreso pueden tener varios planos de potencia?

Mantenemos un crecimiento estable a través de operaciones de capital razonables, nos centramos en las tendencias de desarrollo de la industria y las tecnologías de vanguardia, y nos centramos en la calidad del producto y el rendimiento de la seguridad.
Sí, las placas de circuito impreso pueden tener varios planos de alimentación. Los planos de alimentación son capas de cobre de una placa de circuito impreso que se utilizan para distribuir las señales de alimentación y tierra por toda la placa. Se pueden utilizar varios planos de alimentación para proporcionar diferentes tensiones o para separar las señales analógicas sensibles de las señales digitales ruidosas. También pueden utilizarse para aumentar la capacidad de transporte de corriente de la placa. El número y la disposición de los planos de alimentación en una placa de circuito impreso dependerán de los requisitos específicos del diseño y pueden variar enormemente.

5.¿En qué se diferencian los componentes de montaje superficial de los componentes pasantes en una placa de circuito impreso?

Prestamos atención a la experiencia del usuario y a la calidad del producto, y proporcionamos la mejor calidad de producto y el menor coste de producción a los clientes cooperativos.
Los componentes de montaje superficial (SMD) y los componentes pasantes (THD) son dos tipos distintos de componentes electrónicos utilizados en las placas de circuito impreso (PCB). La principal diferencia entre ellos radica en su método de montaje en la placa de circuito impreso.

1. Método de montaje:
La principal diferencia entre los componentes SMD y THD es su método de montaje. Los componentes SMD se montan directamente sobre la superficie de la placa de circuito impreso, mientras que los componentes THD se insertan en orificios taladrados en la placa de circuito impreso y se sueldan por el otro lado.

2. Tamaño:
Los componentes SMD suelen ser más pequeños que los componentes THD. Esto se debe a que los componentes SMD no necesitan cables ni clavijas para su montaje, lo que permite un diseño más compacto. En cambio, los componentes THD tienen cables o clavijas que deben insertarse en la placa de circuito impreso, lo que aumenta su tamaño.

3. Eficiencia espacial:
Debido a su menor tamaño, los componentes SMD permiten un diseño más eficiente del espacio en la placa de circuito impreso. Esto es especialmente importante en los dispositivos electrónicos modernos, donde el espacio es limitado. Los componentes THD ocupan más espacio en la placa de circuito impreso debido a su mayor tamaño y a la necesidad de taladrar agujeros.

4. Coste:
Los componentes SMD suelen ser más caros que los componentes THD. Esto se debe a que los componentes SMD requieren técnicas y equipos de fabricación más avanzados, lo que encarece su producción.

5. Proceso de montaje:
El proceso de montaje de los componentes SMD está automatizado y utiliza máquinas "pick and place" para colocar con precisión los componentes en la placa de circuito impreso. Esto hace que el proceso sea más rápido y eficiente en comparación con los componentes THD, que requieren inserción y soldadura manual.

6. Rendimiento eléctrico:
Los componentes SMD tienen mejores prestaciones eléctricas que los componentes THD. Esto se debe a que los componentes SMD tienen cables más cortos, lo que se traduce en una menor capacitancia e inductancia parásitas y, por tanto, en una mejor integridad de la señal.

En resumen, los componentes SMD ofrecen un diseño más compacto, mejores prestaciones eléctricas y un proceso de montaje más rápido, pero a un coste más elevado. Los componentes THD, por el contrario, son más grandes, menos caros y pueden soportar potencias y tensiones más elevadas. La elección entre componentes SMD y THD depende de los requisitos específicos del diseño de la placa de circuito impreso y del uso previsto del dispositivo electrónico.

How do surface mount components differ from through-hole components in a PCB?

 

Etiquetas:pcb assembly and manufacturing,prototype printed circuit board assembly,montaje de pcb y proceso de producción