Placa de circuito impresso de 1,2 mm

Há mais de duas décadas, a MTI se dedica a fornecer serviços abrangentes de fabricação OEM/ODM para clientes em todo o mundo. Com nossa ampla experiência em montagem de PCBs, estabelecemos fortes relações de colaboração com distribuidores autorizados de componentes. Isso nos permite obter todos os componentes necessários a preços competitivos, garantindo uma boa relação custo-benefício para nossos clientes.

Nome do produto Placa de circuito impresso de 1,2 mm
Palavra-chave fabricação de 10 camadas de pcb, empilhamento de pcb de 1,6 mm, projeto de antena de pcb de 2,4 ghz, fabricação de pcb, empilhamento de pcb de 16 camadas
Local de origem China
Espessura da placa 2~3,2 mm
Setores aplicáveis eletrônicos de consumo, etc.
Serviço Fabricação OEM/ODM
Certificado ISO-9001:2015, ISO-14001:2015,ISO-13485:2012.UL/CSA
Cor da máscara de solda Vermelho
Vantagens Mantemos a boa qualidade e o preço competitivo para garantir que nossos clientes se beneficiem
País de vendas Em todo o mundo, por exemplo: Guam, Liechtenstein, Uzbequistão, Svalbard, Qatar, Trinidad e Tobago

 

Um de nossos serviços de projeto de hardware é a fabricação de pequenos lotes, que permite testar sua ideia rapidamente e verificar a funcionalidade do projeto de hardware e da placa PCB.

Seus produtos são sempre entregues antes do prazo e com a mais alta qualidade.

Temos uma vasta experiência em engenharia para criar um layout usando uma plataforma de software como o Altium Designer. Esse layout mostra a aparência e o posicionamento exatos dos componentes em sua placa.

Guia de perguntas frequentes

1) Os PCBs podem ter vários planos de energia?

Mantemos um crescimento estável por meio de operações de capital razoáveis, focamos nas tendências de desenvolvimento do setor e em tecnologias de ponta, além de nos concentrarmos na qualidade do produto e no desempenho de segurança.
Sim, as PCBs podem ter vários planos de energia. Os planos de alimentação são camadas de cobre em uma PCB usadas para distribuir sinais de alimentação e aterramento por toda a placa. Vários planos de alimentação podem ser usados para fornecer tensões diferentes ou para separar sinais analógicos sensíveis de sinais digitais ruidosos. Eles também podem ser usados para aumentar a capacidade de transporte de corrente da placa. O número e a disposição dos planos de alimentação em uma PCB dependerão dos requisitos específicos do projeto e podem variar muito.

2) Qual é a distância mínima necessária entre os componentes em uma placa de circuito impresso?

We have advanced production equipment and technology to meet the needs of customers, and can provide customers with high quality, low priced 1.2mm pcb products.
A distância mínima necessária entre os componentes em uma placa de circuito impresso depende de vários fatores, como o tipo de componentes, seu tamanho e o processo de fabricação usado. Em geral, a distância mínima entre os componentes é determinada pelas regras e diretrizes de projeto do fabricante.

Para componentes de montagem em superfície, a distância mínima entre os componentes é normalmente de 0,2 mm a 0,3 mm. Essa distância é necessária para garantir que a pasta de solda não faça uma ponte entre as almofadas durante o processo de refluxo.

Para componentes com orifício de passagem, a distância mínima entre os componentes é normalmente de 1 mm a 2 mm. Essa distância é necessária para garantir que os componentes não interfiram uns nos outros durante o processo de montagem.

Em aplicações de alta velocidade e alta frequência, a distância mínima entre os componentes pode precisar ser aumentada para evitar interferência de sinal e diafonia. Nesses casos, as regras e diretrizes de projeto do fabricante devem ser seguidas à risca.

Em geral, a distância mínima entre os componentes em uma placa de circuito impresso deve ser determinada com base nos requisitos específicos do projeto e nos recursos do processo de fabricação.

3) Como as PCBs suportam a integração de diferentes componentes eletrônicos?

We actively participate in the 1.2mm pcb industry associations and organization activities. The corporate social responsibility performed well, and the focus of brand building and promotion.
As PCBs (Placas de Circuito Impresso) são essenciais para a integração de diferentes componentes eletrônicos em dispositivos eletrônicos. Elas fornecem uma plataforma para conectar e dar suporte aos vários componentes, permitindo que eles trabalhem juntos sem problemas. Veja a seguir algumas maneiras pelas quais as PCBs suportam a integração de diferentes componentes eletrônicos:

1. Conexões elétricas: As placas de circuito impresso têm uma rede de traços de cobre que conectam os diferentes componentes eletrônicos da placa. Esses traços atuam como condutores, permitindo que a eletricidade flua entre os componentes e que eles se comuniquem e trabalhem juntos.

2. Superfície de montagem: As placas de circuito impresso fornecem uma superfície de montagem estável e segura para os componentes eletrônicos. Os componentes são soldados na placa, garantindo que estejam firmemente fixados e não se movam ou se soltem durante a operação.

3. Economia de espaço: As PCBs são projetadas para serem compactas e economizarem espaço, permitindo a integração de vários componentes em uma única placa. Isso é especialmente útil em dispositivos eletrônicos pequenos em que o espaço é limitado.

4. Personalização: As PCBs podem ser personalizadas para acomodar diferentes tipos e tamanhos de componentes eletrônicos. Isso permite flexibilidade no projeto e a integração de uma ampla gama de componentes, facilitando a criação de dispositivos eletrônicos complexos.

5. Roteamento de sinais: As placas de circuito impresso têm várias camadas, sendo que cada camada é dedicada a uma função específica. Isso permite o roteamento eficiente dos sinais entre os componentes, reduzindo a interferência e garantindo que os componentes possam se comunicar de forma eficaz.

6. Distribuição de energia: As placas de circuito impresso têm planos de energia dedicados que distribuem energia para os diferentes componentes da placa. Isso garante que cada componente receba a quantidade necessária de energia, evitando danos e garantindo o funcionamento adequado.

7. Gerenciamento térmico: As PCBs também desempenham um papel fundamental no gerenciamento do calor gerado pelos componentes eletrônicos. Elas têm camadas de cobre que funcionam como dissipadores de calor, dissipando o calor e evitando o superaquecimento dos componentes.

Em resumo, as PCBs fornecem uma plataforma robusta e eficiente para a integração de diferentes componentes eletrônicos. Elas permitem que os componentes trabalhem juntos sem problemas, garantindo o funcionamento adequado dos dispositivos eletrônicos.

4) Quais são os diferentes tipos de técnicas de montagem de furos passantes usados em PCBs?

Temos capacidade de produção flexível. Sejam pedidos grandes ou pequenos, é possível produzir e liberar mercadorias em tempo hábil para atender às necessidades dos clientes.
1. Revestimento de orifício passante: Essa é a técnica mais comum de montagem através de orifícios, na qual os orifícios da placa de circuito impresso são revestidos com um material condutor, geralmente cobre, para criar uma conexão entre as camadas da placa.

2. Solda através do orifício: Nessa técnica, os componentes são inseridos nos orifícios revestidos e, em seguida, soldados às almofadas no lado oposto da placa. Isso proporciona uma forte conexão mecânica e boa condutividade elétrica.

3. Rebitagem de furo passante: Nesse método, os componentes são inseridos nos orifícios revestidos e, em seguida, fixados com um rebite ou pino. Esse método é comumente usado para componentes de alta potência ou em aplicações em que a placa pode sofrer altos níveis de vibração.

4. Press-Fit através do orifício: Essa técnica envolve a inserção dos cabos dos componentes nos orifícios revestidos e, em seguida, pressioná-los no lugar usando uma ferramenta especializada. Isso proporciona uma forte conexão mecânica sem a necessidade de solda.

5. Solda por onda através do orifício: Nesse método, os componentes são inseridos nos orifícios revestidos e, em seguida, passam por uma onda de solda derretida, o que cria uma forte junta de solda entre os condutores dos componentes e as almofadas da PCB.

6. Solda por refluxo através de orifício: Essa técnica é semelhante à solda por onda, mas, em vez de passar sobre uma onda de solda derretida, a placa é aquecida em um ambiente controlado para derreter a solda e criar uma junta forte.

7. Solda manual através de orifícios: Esse é um método manual de soldagem em que os componentes são inseridos nos orifícios revestidos e, em seguida, soldados à mão usando um ferro de solda. Esse método é normalmente usado para produção em pequena escala ou para reparos.

8. Pin-in-Paste através do orifício: Essa técnica envolve a inserção dos cabos dos componentes nos orifícios revestidos e, em seguida, a aplicação de pasta de solda nos orifícios antes da soldagem por refluxo. Isso proporciona uma forte conexão mecânica e boas juntas de solda.

9. Through-Hole Pin-in-Hole: nesse método, os cabos dos componentes são inseridos nos orifícios revestidos e, em seguida, dobrados para formar um ângulo reto, criando uma conexão mecânica segura. Esse método é comumente usado para componentes com cabos grandes, como capacitores eletrolíticos.

10. Montagem manual com furo passante: Esse é um método manual de montagem em que os componentes são inseridos nos furos revestidos e, em seguida, fixados com ferramentas manuais, como parafusos ou porcas. Esse método é comumente usado para componentes grandes ou pesados que exigem suporte adicional.

5) Quais são os principais recursos de uma placa de circuito impresso?

Temos o compromisso de fornecer soluções personalizadas e estabelecemos relações estratégicas de cooperação de longo prazo com os clientes.
1. Substrato: O material de base no qual o circuito é impresso, geralmente feito de fibra de vidro ou epóxi composto.

2. Traços condutores: Linhas finas de cobre que conectam os componentes na placa de circuito impresso.

3. Pads: Pequenas áreas de cobre na superfície da placa de circuito impresso onde os componentes são soldados.

4. Vias: Furos feitos na placa de circuito impresso para conectar as diferentes camadas do circuito.

5. Máscara de solda: Uma camada de material protetor que cobre os traços e as almofadas de cobre, evitando curtos-circuitos acidentais.

6. Serigrafia: Uma camada de tinta que é impressa na placa de circuito impresso para rotular os componentes e fornecer outras informações úteis.

7. Componentes: Dispositivos eletrônicos, como resistores, capacitores e circuitos integrados, que são montados na placa de circuito impresso.

8. Furos de montagem: Furos feitos na placa de circuito impresso para permitir que ela seja fixada com segurança em um dispositivo ou gabinete maior.

9. Derrame de cobre: Grandes áreas de cobre que são usadas para fornecer um aterramento comum ou um plano de energia para o circuito.

10. Conectores de borda: Contatos metálicos na borda da placa de circuito impresso que permitem que ela seja conectada a outros circuitos ou dispositivos.

11. Pontes de solda: Pequenas áreas de cobre exposto que permitem a conexão de dois ou mais traços.

12. Pontos de teste: Pequenas almofadas ou orifícios na placa de circuito impresso que permitem o teste e a solução de problemas do circuito.

13. Legenda da serigrafia: Texto ou símbolos impressos na camada de serigrafia que fornecem informações adicionais sobre a PCB e seus componentes.

14. Designadores: Letras ou números impressos na camada de serigrafia para identificar componentes específicos na placa de circuito impresso.

15. Designadores de referência: Uma combinação de letras e números que identificam a localização de um componente na placa de circuito impresso de acordo com o diagrama esquemático.

What are the key features of a PCB?

6.How does the type of PCB connection (wired or wireless) impact its design and features?

Nossos produtos e serviços abrangem uma ampla gama de áreas e atendem às necessidades de diferentes campos.
O tipo de conexão da placa de circuito impresso, seja com ou sem fio, pode ter um impacto significativo no design e nos recursos da placa de circuito impresso. Algumas das principais maneiras pelas quais o tipo de conexão pode afetar o design e os recursos da PCB são:

1. Tamanho e fator de forma: Normalmente, as PCBs com fio exigem conectores e cabos físicos, o que pode aumentar o tamanho geral e o fator de forma da PCB. Por outro lado, as PCBs sem fio não exigem conectores e cabos físicos, o que permite um design menor e mais compacto.

2. Consumo de energia: As PCBs com fio requerem um fornecimento constante de energia para funcionar, enquanto as PCBs sem fio podem operar com energia da bateria. Isso pode afetar o consumo de energia e a vida útil da bateria do dispositivo, o que, por sua vez, pode afetar o design geral e os recursos da PCB.

3. Flexibilidade e mobilidade: As PCBs sem fio oferecem maior flexibilidade e mobilidade, pois não têm conexões físicas que restrinjam o movimento. Isso pode ser vantajoso em aplicativos em que o dispositivo precisa ser movido ou usado em locais diferentes.

4. Velocidade de transferência de dados: normalmente, as PCBs com fio têm velocidades de transferência de dados mais rápidas em comparação com as PCBs sem fio. Isso pode afetar o design e os recursos da PCB, pois determinados aplicativos podem exigir transferência de dados em alta velocidade.

5. Custo: O tipo de conexão também pode afetar o custo da placa de circuito impresso. As PCBs com fio podem exigir componentes adicionais, como conectores e cabos, o que pode aumentar o custo total. As PCBs sem fio, por outro lado, podem exigir tecnologia e componentes mais avançados, o que as torna mais caras.

6. Confiabilidade: As PCBs com fio geralmente são consideradas mais confiáveis, pois têm uma conexão física, que é menos propensa a interferência ou perda de sinal. As PCBs sem fio, por outro lado, podem ser mais suscetíveis à interferência e à perda de sinal, o que pode afetar sua confiabilidade.

De modo geral, o tipo de conexão de PCB pode afetar significativamente o design e os recursos da PCB, e é importante considerar cuidadosamente os requisitos específicos do aplicativo ao escolher entre conexões com e sem fio.

7) Como o tipo de máscara de solda usada afeta o desempenho da placa de circuito impresso?

We have broad development space in domestic and foreign markets. 1.2mm pcbs have great advantages in terms of price, quality, and delivery date.
O tipo de máscara de solda usado pode afetar o desempenho da placa de circuito impresso de várias maneiras:

1. Isolamento: A máscara de solda é usada para isolar os traços de cobre em uma PCB, evitando que eles entrem em contato uns com os outros e causem um curto-circuito. O tipo de máscara de solda usado pode afetar o nível de isolamento fornecido, o que pode afetar a confiabilidade e a funcionalidade gerais da PCB.

2. Soldabilidade: A máscara de solda também desempenha um papel fundamental no processo de soldagem. O tipo de máscara de solda usada pode afetar a tensão superficial e as propriedades de umedecimento da solda, o que pode afetar a qualidade das juntas de solda e a confiabilidade geral da placa de circuito impresso.

3. Resistência térmica: A máscara de solda também pode atuar como uma barreira térmica, protegendo a placa de circuito impresso do calor excessivo. O tipo de máscara de solda usado pode afetar a resistência térmica da placa de circuito impresso, o que pode afetar sua capacidade de dissipar o calor e seu desempenho térmico geral.

4. Resistência química: A máscara de solda também é exposta a vários produtos químicos durante o processo de fabricação da placa de circuito impresso, como fluxo e agentes de limpeza. O tipo de máscara de solda usado pode afetar sua resistência a esses produtos químicos, o que pode afetar a durabilidade e a confiabilidade gerais da PCB.

5. Propriedades elétricas: O tipo de máscara de solda usado também pode afetar as propriedades elétricas da placa de circuito impresso, como a constante dielétrica e o fator de dissipação. Essas propriedades podem afetar o desempenho dos circuitos de alta frequência e a integridade do sinal.

De modo geral, o tipo de máscara de solda usado pode ter um impacto significativo no desempenho, na confiabilidade e na durabilidade de uma placa de circuito impresso. É essencial selecionar cuidadosamente a máscara de solda apropriada para uma aplicação específica a fim de garantir o desempenho ideal.

8) Quais são os fatores a serem considerados ao escolher o material de PCB correto para uma aplicação específica?

We are centered on customers and always pay attention to customers’ needs for 1.2mm pcb products.
1. Propriedades elétricas: As propriedades elétricas do material da placa de circuito impresso, como constante dielétrica, tangente de perda e resistência de isolamento, devem ser cuidadosamente consideradas para garantir o desempenho ideal para a aplicação específica.

2. Propriedades térmicas: A condutividade térmica e o coeficiente de expansão térmica do material da placa de circuito impresso são fatores importantes a serem considerados, especialmente para aplicações que exigem alta potência ou operam em temperaturas extremas.

3. Propriedades mecânicas: A resistência mecânica, a rigidez e a flexibilidade do material da placa de circuito impresso devem ser avaliadas para garantir que ele possa suportar as tensões e os esforços físicos da aplicação.

4. Resistência química: O material da PCB deve ser resistente a quaisquer produtos químicos ou solventes com os quais possa entrar em contato durante o uso.

5. Custo: O custo do material da placa de circuito impresso deve ser considerado, pois pode variar significativamente dependendo do tipo e da qualidade do material.

6. Disponibilidade: Alguns materiais de PCB podem estar mais prontamente disponíveis do que outros, o que pode afetar os cronogramas e os custos de produção.

7. Processo de fabricação: O material de PCB escolhido deve ser compatível com o processo de fabricação, como gravação, perfuração e revestimento, para garantir uma produção eficiente e confiável.

8. Fatores ambientais: O ambiente da aplicação, como umidade, umidade e exposição à luz UV, deve ser levado em consideração ao selecionar um material de PCB para garantir que ele possa suportar essas condições.

9. Integridade do sinal: Para aplicações de alta frequência, o material da placa de circuito impresso deve ter baixa perda de sinal e boa integridade de sinal para evitar interferência e garantir a transmissão precisa do sinal.

10. Conformidade com RoHS: Se a aplicação exigir conformidade com as normas ambientais, como a diretiva RoHS (Restriction of Hazardous Substances, Restrição de Substâncias Perigosas), o material da PCB deverá ser escolhido de acordo.

 

Tags:Placa de circuito impresso de 120 mm,3018 pcb,100 pçs,Empilhamento de placas de circuito impresso de 1,6 mm