pcb de 30 capas

reflow soldering

Durante más de dos décadas, MTI se ha dedicado a proporcionar servicios integrales de fabricación OEM/ODM a clientes de todo el mundo. Gracias a nuestra amplia experiencia en el montaje de placas de circuito impreso, hemos establecido sólidas relaciones de colaboración con distribuidores autorizados de componentes. Esto nos permite abastecernos de cualquier componente necesario a precios competitivos, garantizando la rentabilidad para nuestros clientes.

Nombre del producto pcb de 30 capas
Palabra clave 3018 pcb,printed circuit board assemblies,assembling circuit boards,12 layer pcb stack up
Lugar de origen China
Grosor del tablero 2~3,2 mm
Industrias aplicables control industrial, etc.
Servicio Fabricación OEM/ODM
Certificado ISO-9001:2015, ISO-14001:2015,ISO-13485:2012.UL/CSA
Color de la máscara de soldadura Rojo
Ventaja Mantenemos una buena calidad y un precio competitivo para que nuestros clientes se beneficien
País de ventas All over the world for example:Northern Mariana Islands,Palau,Thailand,Antarctica,Bahamas, The

 

Uno de nuestros servicios de diseño de hardware es la fabricación de lotes pequeños, que le permite probar su idea rápidamente y verificar la funcionalidad del diseño de hardware y la placa de circuito impreso.

Contamos con una amplia experiencia en ingeniería para crear un diseño utilizando una plataforma de software como Altium Designer. Este diseño muestra la apariencia exacta y la colocación de los componentes en la placa.

Sus productos siempre se entregan antes de lo previsto y con la máxima calidad.

Guía de preguntas frecuentes

1.¿En qué se diferencian los componentes de montaje superficial de los componentes pasantes en una placa de circuito impreso?

Prestamos atención a la experiencia del usuario y a la calidad del producto, y proporcionamos la mejor calidad de producto y el menor coste de producción a los clientes cooperativos.
Los componentes de montaje superficial (SMD) y los componentes pasantes (THD) son dos tipos distintos de componentes electrónicos utilizados en las placas de circuito impreso (PCB). La principal diferencia entre ellos radica en su método de montaje en la placa de circuito impreso.

1. Método de montaje:
La principal diferencia entre los componentes SMD y THD es su método de montaje. Los componentes SMD se montan directamente sobre la superficie de la placa de circuito impreso, mientras que los componentes THD se insertan en orificios taladrados en la placa de circuito impreso y se sueldan por el otro lado.

2. Tamaño:
Los componentes SMD suelen ser más pequeños que los componentes THD. Esto se debe a que los componentes SMD no necesitan cables ni clavijas para su montaje, lo que permite un diseño más compacto. En cambio, los componentes THD tienen cables o clavijas que deben insertarse en la placa de circuito impreso, lo que aumenta su tamaño.

3. Eficiencia espacial:
Debido a su menor tamaño, los componentes SMD permiten un diseño más eficiente del espacio en la placa de circuito impreso. Esto es especialmente importante en los dispositivos electrónicos modernos, donde el espacio es limitado. Los componentes THD ocupan más espacio en la placa de circuito impreso debido a su mayor tamaño y a la necesidad de taladrar agujeros.

4. Coste:
Los componentes SMD suelen ser más caros que los componentes THD. Esto se debe a que los componentes SMD requieren técnicas y equipos de fabricación más avanzados, lo que encarece su producción.

5. Proceso de montaje:
El proceso de montaje de los componentes SMD está automatizado y utiliza máquinas "pick and place" para colocar con precisión los componentes en la placa de circuito impreso. Esto hace que el proceso sea más rápido y eficiente en comparación con los componentes THD, que requieren inserción y soldadura manual.

6. Rendimiento eléctrico:
Los componentes SMD tienen mejores prestaciones eléctricas que los componentes THD. Esto se debe a que los componentes SMD tienen cables más cortos, lo que se traduce en una menor capacitancia e inductancia parásitas y, por tanto, en una mejor integridad de la señal.

En resumen, los componentes SMD ofrecen un diseño más compacto, mejores prestaciones eléctricas y un proceso de montaje más rápido, pero a un coste más elevado. Los componentes THD, por el contrario, son más grandes, menos caros y pueden soportar potencias y tensiones más elevadas. La elección entre componentes SMD y THD depende de los requisitos específicos del diseño de la placa de circuito impreso y del uso previsto del dispositivo electrónico.

2.What materials are commonly used to make PCBs?

Tenemos ventajas en marketing y expansión de canales. Los proveedores han establecido buenas relaciones de cooperación, han mejorado continuamente los flujos de trabajo, la eficiencia y la productividad, y han proporcionado a los clientes productos y servicios de alta calidad.
1. El cobre: El cobre es el material más utilizado en las placas de circuito impreso. Se utiliza como capa conductora para las pistas y las almohadillas de los circuitos.

2. FR4: FR4 es un tipo de laminado epoxi reforzado con fibra de vidrio que se utiliza como material de base para la mayoría de las placas de circuito impreso. Ofrece una buena resistencia mecánica y propiedades aislantes.

3. Máscara de soldadura: La máscara de soldadura es una capa de polímero que se aplica sobre las trazas de cobre para protegerlas de la oxidación y evitar puentes de soldadura durante el montaje.

4. Serigrafía: La serigrafía es una capa de tinta que se imprime encima de la máscara de soldadura para proporcionar etiquetas de componentes, designadores de referencia y otra información.

5. Soldadura con estaño/plomo o sin plomo: La soldadura se utiliza para fijar los componentes a la placa de circuito impreso y crear conexiones eléctricas entre ellos.

6. Oro: El oro se utiliza para revestir las pastillas de contacto y las vías de la placa de circuito impreso, ya que proporciona una buena conductividad y resistencia a la corrosión.

7. Plata: La plata se utiliza a veces como alternativa al oro para el chapado de pastillas de contacto y vías, ya que es más barata pero sigue proporcionando una buena conductividad.

8. Níquel: El níquel se utiliza como capa de barrera entre el cobre y el chapado en oro o plata para evitar que se difundan entre sí.

9. Resina epoxi: La resina epoxi se utiliza como adhesivo para unir las capas de la placa de circuito impreso.

10. Cerámica: Los materiales cerámicos se utilizan para placas de circuito impreso especializadas que requieren una alta conductividad térmica y propiedades aislantes, como en aplicaciones de alta potencia.

What materials are commonly used to make 30 layer pcb?

3.¿Cuál es la distancia mínima necesaria entre los componentes de una placa de circuito impreso?

We have advanced production equipment and technology to meet the needs of customers, and can provide customers with high quality, low priced 30 layer pcb products.
La distancia mínima necesaria entre los componentes de una placa de circuito impreso depende de varios factores, como el tipo de componentes, su tamaño y el proceso de fabricación utilizado. Por lo general, la distancia mínima entre componentes viene determinada por las normas y directrices de diseño del fabricante.

En el caso de los componentes de montaje superficial, la distancia mínima entre ellos suele ser de 0,2 mm a 0,3 mm. Esta distancia es necesaria para garantizar que la pasta de soldadura no haga puente entre las almohadillas durante el proceso de reflujo.

Para los componentes con orificios pasantes, la distancia mínima entre componentes suele ser de 1 mm a 2 mm. Esta distancia es necesaria para garantizar que los componentes no interfieran entre sí durante el proceso de montaje.

En aplicaciones de alta velocidad y alta frecuencia, puede ser necesario aumentar la distancia mínima entre componentes para evitar interferencias de señal y diafonía. En estos casos, deben seguirse al pie de la letra las normas y directrices de diseño del fabricante.

En general, la distancia mínima entre los componentes de una placa de circuito impreso debe determinarse en función de los requisitos específicos del diseño y de las capacidades del proceso de fabricación.

4.¿Cómo influyen el tamaño y la forma de los orificios en el proceso de fabricación de una placa de circuito impreso?

Seguimos invirtiendo en investigación y desarrollo y seguimos lanzando productos innovadores.
El tamaño y la forma de los orificios de una placa de circuito impreso pueden afectar al proceso de fabricación de varias maneras:

1. Proceso de perforación: El tamaño y la forma de los agujeros determinan el tipo de broca y la velocidad de perforación necesarios para crearlos. Los agujeros más pequeños requieren brocas más pequeñas y velocidades de perforación más lentas, mientras que los agujeros más grandes requieren brocas más grandes y velocidades de perforación más rápidas. La forma del agujero también puede afectar a la estabilidad de la broca y a la precisión del proceso de perforación.

2. Proceso de chapado: Una vez taladrados los orificios, hay que recubrirlos con un material conductor para crear conexiones eléctricas entre las distintas capas de la placa de circuito impreso. El tamaño y la forma de los orificios pueden afectar al proceso de metalizado, ya que los orificios más grandes o de forma irregular pueden requerir más material de metalizado y tiempos de metalizado más largos.

3. Proceso de soldadura: El tamaño y la forma de los orificios también pueden influir en el proceso de soldadura. Los agujeros más pequeños pueden requerir una colocación más precisa de los componentes y técnicas de soldadura más cuidadosas, mientras que los agujeros más grandes pueden permitir una soldadura más fácil.

4. Colocación de componentes: El tamaño y la forma de los orificios también pueden afectar a la colocación de los componentes en la placa de circuito impreso. Los agujeros más pequeños pueden limitar el tamaño de los componentes que se pueden utilizar, mientras que los agujeros más grandes pueden permitir una mayor flexibilidad en la colocación de componentes.

5. Diseño de la placa de circuito impreso: El tamaño y la forma de los orificios también pueden influir en el diseño general de la placa de circuito impreso. Diferentes tamaños y formas de los orificios pueden requerir diferentes estrategias de enrutamiento y diseño, lo que puede afectar a la funcionalidad y el rendimiento general de la placa de circuito impreso.

En general, el tamaño y la forma de los orificios de una placa de circuito impreso pueden influir considerablemente en el proceso de fabricación y deben tenerse muy en cuenta durante la fase de diseño para garantizar una producción eficaz y precisa.

How does the hole size and shape impact the manufacturing process of a PCB?

5.¿Qué importancia tienen la anchura y la separación de las trazas en el diseño de una placa de circuito impreso?

Our 30 layer pcb products have competitive and differentiated advantages, and actively promote digital transformation and innovation.
La anchura y el espaciado de las trazas en el diseño de una placa de circuito impreso son factores cruciales que pueden afectar en gran medida al rendimiento y la fiabilidad del circuito. He aquí algunas razones:

1. Capacidad de transporte de corriente: La anchura de la traza determina la cantidad de corriente que puede circular por ella sin provocar un calentamiento excesivo. Si la anchura de la traza es demasiado estrecha, puede provocar un sobrecalentamiento y dañar el circuito.

2. Caída de tensión: La anchura de la traza también afecta a la caída de tensión a través de la traza. Una traza estrecha tendrá una mayor resistencia, lo que se traducirá en una mayor caída de tensión. Esto puede provocar una disminución del nivel de tensión al final de la traza, afectando al rendimiento del circuito.

3. Integridad de la señal: El espaciado entre trazas es fundamental para mantener la integridad de la señal. Si el espaciado es demasiado estrecho, puede producirse diafonía e interferencias entre las señales, con los consiguientes errores y fallos de funcionamiento en el circuito.

4. 4. Gestión térmica: El espaciado entre trazas también desempeña un papel en la gestión térmica. Un espaciado adecuado entre trazas permite una mejor circulación del aire, lo que ayuda a disipar el calor del circuito. Esto es especialmente importante en circuitos de alta potencia.

5. Limitaciones de fabricación: En el proceso de fabricación también hay que tener en cuenta la anchura y el espaciado de las trazas. Si las trazas están demasiado juntas, puede resultar difícil grabar e inspeccionar la placa de circuito impreso, con los consiguientes defectos de fabricación.

En resumen, la anchura y el espaciado de las trazas son parámetros críticos que deben tenerse muy en cuenta en el diseño de placas de circuito impreso para garantizar el correcto funcionamiento y la fiabilidad del circuito.

6.¿Pueden diseñarse las placas de circuito impreso para soportar grandes vibraciones o choques?

Hemos establecido asociaciones estables y a largo plazo con nuestros proveedores, por lo que tenemos grandes ventajas en precio y coste y en garantía de calidad.
Sí, las placas de circuito impreso pueden diseñarse para resistir grandes vibraciones o choques incorporando determinadas características de diseño y utilizando los materiales adecuados. Algunas formas de hacer que una PCB sea más resistente a vibraciones y choques son:

1. Utilizar un material de sustrato de PCB más grueso y rígido, como FR-4 o cerámica, para proporcionar un mejor soporte estructural y reducir la flexión.

2. Añadir estructuras de soporte adicionales, como orificios de montaje o refuerzos, para fijar la placa de circuito impreso al chasis o caja.

3. Utilización de componentes más pequeños y compactos para reducir el peso total y el tamaño de la placa de circuito impreso, lo que puede ayudar a minimizar los efectos de las vibraciones.

4. Utilizar materiales amortiguadores, como goma o espuma, entre la placa de circuito impreso y la superficie de montaje para absorber y amortiguar las vibraciones.

5. Diseñar la disposición de la placa de circuito impreso para minimizar la longitud y el número de trazas y vías, lo que puede reducir el riesgo de tensiones mecánicas y fallos.

6. Utilizar componentes con tecnología de montaje superficial (SMT) en lugar de componentes con orificios pasantes, ya que son menos propensos a dañarse por las vibraciones.

7. 7. Incorporación de materiales de revestimiento o encapsulado para proteger la placa de circuito impreso y los componentes de la humedad y los esfuerzos mecánicos.

Es importante tener en cuenta los requisitos específicos y el entorno en el que se utilizará la placa de circuito impreso a la hora de diseñar la resistencia a las vibraciones o a los golpes. Consultar con un experto en diseño de PCB también puede ayudar a garantizar que la PCB esté correctamente diseñada para soportar estas condiciones.

Can 30 layer pcb be designed to withstand high vibration or shock?

7.¿Cómo afecta la colocación de los componentes a la integridad de la señal en un diseño de PCB?

Prestamos atención a la transformación de la protección de la propiedad intelectual y los logros de la innovación. Su diseño de la orden del OEM o del ODM tenemos un sistema completo de la confidencialidad.
La colocación de los componentes desempeña un papel crucial a la hora de determinar la integridad de la señal de un diseño de PCB. La colocación de los componentes afecta al trazado de las pistas, lo que a su vez afecta a la impedancia, la diafonía y la integridad de la señal de la placa de circuito impreso.

1. Impedancia: La colocación de los componentes afecta a la impedancia de las trazas. Si los componentes se colocan demasiado separados, las trazas serán más largas, con lo que la impedancia será mayor. Esto puede provocar reflexiones y degradación de la señal.

2. Diafonía: La diafonía es la interferencia entre dos trazas de una placa de circuito impreso. La colocación de los componentes puede afectar a la distancia entre las trazas, lo que puede aumentar o disminuir la diafonía. Si los componentes se colocan demasiado cerca unos de otros, la diafonía entre las trazas puede aumentar, provocando distorsiones en la señal.

3. Enrutamiento de señales: La colocación de los componentes también afecta al trazado de las señales. Si los componentes se colocan de forma que las trazas tengan que hacer giros bruscos o cruzarse unas con otras, puede producirse una degradación de la señal. Esto puede evitarse colocando cuidadosamente los componentes de forma que permitan un enrutado suave y directo de las trazas.

4. 4. Conexión a tierra: Una correcta conexión a tierra es esencial para mantener la integridad de la señal. La colocación de los componentes puede afectar al esquema de conexión a tierra de la placa de circuito impreso. Si los componentes se colocan demasiado lejos del plano de tierra, puede producirse un camino de retorno más largo para las señales, lo que provoca rebotes de tierra y ruido.

5. Consideraciones térmicas: La colocación de los componentes también puede afectar al rendimiento térmico de la placa de circuito impreso. Si los componentes que generan mucho calor se colocan demasiado cerca unos de otros, pueden producirse puntos calientes y afectar al rendimiento de la placa de circuito impreso.

Para garantizar una buena integridad de la señal, es importante considerar cuidadosamente la colocación de los componentes durante el proceso de diseño de la placa de circuito impreso. Los componentes deben colocarse de forma que se minimice la longitud de las trazas, se reduzca la diafonía, se permita el enrutamiento directo de las trazas y se garantice una gestión térmica y de conexión a tierra adecuada.

 

Etiquetas:Placa de 1,2 mm,apilado de pcb de 16 capas,conjuntos de placas de circuitos